Spaces:
Runtime error
Runtime error
File size: 36,991 Bytes
2fa4776 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 |
import argparse
import sys
import torch
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import logging
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
sys.path.append("extern/")
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from zero123 import CLIPCameraProjection, Zero123Pipeline
logger = logging.get_logger(__name__)
def create_unet_diffusers_config(original_config, image_size: int, controlnet=False):
"""
Creates a config for the diffusers based on the config of the LDM model.
"""
if controlnet:
unet_params = original_config.model.params.control_stage_config.params
else:
if (
"unet_config" in original_config.model.params
and original_config.model.params.unet_config is not None
):
unet_params = original_config.model.params.unet_config.params
else:
unet_params = original_config.model.params.network_config.params
vae_params = original_config.model.params.first_stage_config.params.ddconfig
block_out_channels = [
unet_params.model_channels * mult for mult in unet_params.channel_mult
]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = (
"CrossAttnDownBlock2D"
if resolution in unet_params.attention_resolutions
else "DownBlock2D"
)
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = (
"CrossAttnUpBlock2D"
if resolution in unet_params.attention_resolutions
else "UpBlock2D"
)
up_block_types.append(block_type)
resolution //= 2
if unet_params.transformer_depth is not None:
transformer_layers_per_block = (
unet_params.transformer_depth
if isinstance(unet_params.transformer_depth, int)
else list(unet_params.transformer_depth)
)
else:
transformer_layers_per_block = 1
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
head_dim = unet_params.num_heads if "num_heads" in unet_params else None
use_linear_projection = (
unet_params.use_linear_in_transformer
if "use_linear_in_transformer" in unet_params
else False
)
if use_linear_projection:
# stable diffusion 2-base-512 and 2-768
if head_dim is None:
head_dim_mult = unet_params.model_channels // unet_params.num_head_channels
head_dim = [head_dim_mult * c for c in list(unet_params.channel_mult)]
class_embed_type = None
addition_embed_type = None
addition_time_embed_dim = None
projection_class_embeddings_input_dim = None
context_dim = None
if unet_params.context_dim is not None:
context_dim = (
unet_params.context_dim
if isinstance(unet_params.context_dim, int)
else unet_params.context_dim[0]
)
if "num_classes" in unet_params:
if unet_params.num_classes == "sequential":
if context_dim in [2048, 1280]:
# SDXL
addition_embed_type = "text_time"
addition_time_embed_dim = 256
else:
class_embed_type = "projection"
assert "adm_in_channels" in unet_params
projection_class_embeddings_input_dim = unet_params.adm_in_channels
else:
raise NotImplementedError(
f"Unknown conditional unet num_classes config: {unet_params.num_classes}"
)
config = {
"sample_size": image_size // vae_scale_factor,
"in_channels": unet_params.in_channels,
"down_block_types": tuple(down_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": unet_params.num_res_blocks,
"cross_attention_dim": context_dim,
"attention_head_dim": head_dim,
"use_linear_projection": use_linear_projection,
"class_embed_type": class_embed_type,
"addition_embed_type": addition_embed_type,
"addition_time_embed_dim": addition_time_embed_dim,
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
"transformer_layers_per_block": transformer_layers_per_block,
}
if controlnet:
config["conditioning_channels"] = unet_params.hint_channels
else:
config["out_channels"] = unet_params.out_channels
config["up_block_types"] = tuple(up_block_types)
return config
def assign_to_checkpoint(
paths,
checkpoint,
old_checkpoint,
attention_paths_to_split=None,
additional_replacements=None,
config=None,
):
"""
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
attention layers, and takes into account additional replacements that may arise.
Assigns the weights to the new checkpoint.
"""
assert isinstance(
paths, list
), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
old_tensor = old_checkpoint[path]
channels = old_tensor.shape[0] // 3
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
old_tensor = old_tensor.reshape(
(num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]
)
query, key, value = old_tensor.split(channels // num_heads, dim=1)
checkpoint[path_map["query"]] = query.reshape(target_shape)
checkpoint[path_map["key"]] = key.reshape(target_shape)
checkpoint[path_map["value"]] = value.reshape(target_shape)
for path in paths:
new_path = path["new"]
# These have already been assigned
if (
attention_paths_to_split is not None
and new_path in attention_paths_to_split
):
continue
# Global renaming happens here
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
if additional_replacements is not None:
for replacement in additional_replacements:
new_path = new_path.replace(replacement["old"], replacement["new"])
# proj_attn.weight has to be converted from conv 1D to linear
is_attn_weight = "proj_attn.weight" in new_path or (
"attentions" in new_path and "to_" in new_path
)
shape = old_checkpoint[path["old"]].shape
if is_attn_weight and len(shape) == 3:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
elif is_attn_weight and len(shape) == 4:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0]
else:
checkpoint[new_path] = old_checkpoint[path["old"]]
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(".")[n_shave_prefix_segments:])
else:
return ".".join(path.split(".")[:n_shave_prefix_segments])
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item.replace("in_layers.0", "norm1")
new_item = new_item.replace("in_layers.2", "conv1")
new_item = new_item.replace("out_layers.0", "norm2")
new_item = new_item.replace("out_layers.3", "conv2")
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
new_item = new_item.replace("skip_connection", "conv_shortcut")
new_item = shave_segments(
new_item, n_shave_prefix_segments=n_shave_prefix_segments
)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def convert_ldm_unet_checkpoint(
checkpoint,
config,
path=None,
extract_ema=False,
controlnet=False,
skip_extract_state_dict=False,
):
"""
Takes a state dict and a config, and returns a converted checkpoint.
"""
if skip_extract_state_dict:
unet_state_dict = checkpoint
else:
# extract state_dict for UNet
unet_state_dict = {}
keys = list(checkpoint.keys())
if controlnet:
unet_key = "control_model."
else:
unet_key = "model.diffusion_model."
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
logger.warning(f"Checkpoint {path} has both EMA and non-EMA weights.")
logger.warning(
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
)
for key in keys:
if key.startswith("model.diffusion_model"):
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
unet_state_dict[key.replace(unet_key, "")] = checkpoint[
flat_ema_key
]
else:
if sum(k.startswith("model_ema") for k in keys) > 100:
logger.warning(
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
)
for key in keys:
if key.startswith(unet_key):
unet_state_dict[key.replace(unet_key, "")] = checkpoint[key]
new_checkpoint = {}
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict[
"time_embed.0.weight"
]
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict[
"time_embed.0.bias"
]
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict[
"time_embed.2.weight"
]
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict[
"time_embed.2.bias"
]
if config["class_embed_type"] is None:
# No parameters to port
...
elif (
config["class_embed_type"] == "timestep"
or config["class_embed_type"] == "projection"
):
new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict[
"label_emb.0.0.weight"
]
new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict[
"label_emb.0.0.bias"
]
new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict[
"label_emb.0.2.weight"
]
new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict[
"label_emb.0.2.bias"
]
else:
raise NotImplementedError(
f"Not implemented `class_embed_type`: {config['class_embed_type']}"
)
if config["addition_embed_type"] == "text_time":
new_checkpoint["add_embedding.linear_1.weight"] = unet_state_dict[
"label_emb.0.0.weight"
]
new_checkpoint["add_embedding.linear_1.bias"] = unet_state_dict[
"label_emb.0.0.bias"
]
new_checkpoint["add_embedding.linear_2.weight"] = unet_state_dict[
"label_emb.0.2.weight"
]
new_checkpoint["add_embedding.linear_2.bias"] = unet_state_dict[
"label_emb.0.2.bias"
]
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
if not controlnet:
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
# Retrieves the keys for the input blocks only
num_input_blocks = len(
{
".".join(layer.split(".")[:2])
for layer in unet_state_dict
if "input_blocks" in layer
}
)
input_blocks = {
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
for layer_id in range(num_input_blocks)
}
# Retrieves the keys for the middle blocks only
num_middle_blocks = len(
{
".".join(layer.split(".")[:2])
for layer in unet_state_dict
if "middle_block" in layer
}
)
middle_blocks = {
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
for layer_id in range(num_middle_blocks)
}
# Retrieves the keys for the output blocks only
num_output_blocks = len(
{
".".join(layer.split(".")[:2])
for layer in unet_state_dict
if "output_blocks" in layer
}
)
output_blocks = {
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
for layer_id in range(num_output_blocks)
}
for i in range(1, num_input_blocks):
block_id = (i - 1) // (config["layers_per_block"] + 1)
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
resnets = [
key
for key in input_blocks[i]
if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
]
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
new_checkpoint[
f"down_blocks.{block_id}.downsamplers.0.conv.weight"
] = unet_state_dict.pop(f"input_blocks.{i}.0.op.weight")
new_checkpoint[
f"down_blocks.{block_id}.downsamplers.0.conv.bias"
] = unet_state_dict.pop(f"input_blocks.{i}.0.op.bias")
paths = renew_resnet_paths(resnets)
meta_path = {
"old": f"input_blocks.{i}.0",
"new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}",
}
assign_to_checkpoint(
paths,
new_checkpoint,
unet_state_dict,
additional_replacements=[meta_path],
config=config,
)
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {
"old": f"input_blocks.{i}.1",
"new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}",
}
assign_to_checkpoint(
paths,
new_checkpoint,
unet_state_dict,
additional_replacements=[meta_path],
config=config,
)
resnet_0 = middle_blocks[0]
attentions = middle_blocks[1]
resnet_1 = middle_blocks[2]
resnet_0_paths = renew_resnet_paths(resnet_0)
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
resnet_1_paths = renew_resnet_paths(resnet_1)
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
attentions_paths = renew_attention_paths(attentions)
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
attentions_paths,
new_checkpoint,
unet_state_dict,
additional_replacements=[meta_path],
config=config,
)
for i in range(num_output_blocks):
block_id = i // (config["layers_per_block"] + 1)
layer_in_block_id = i % (config["layers_per_block"] + 1)
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
output_block_list = {}
for layer in output_block_layers:
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
if layer_id in output_block_list:
output_block_list[layer_id].append(layer_name)
else:
output_block_list[layer_id] = [layer_name]
if len(output_block_list) > 1:
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
attentions = [
key for key in output_blocks[i] if f"output_blocks.{i}.1" in key
]
resnet_0_paths = renew_resnet_paths(resnets)
paths = renew_resnet_paths(resnets)
meta_path = {
"old": f"output_blocks.{i}.0",
"new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}",
}
assign_to_checkpoint(
paths,
new_checkpoint,
unet_state_dict,
additional_replacements=[meta_path],
config=config,
)
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
if ["conv.bias", "conv.weight"] in output_block_list.values():
index = list(output_block_list.values()).index(
["conv.bias", "conv.weight"]
)
new_checkpoint[
f"up_blocks.{block_id}.upsamplers.0.conv.weight"
] = unet_state_dict[f"output_blocks.{i}.{index}.conv.weight"]
new_checkpoint[
f"up_blocks.{block_id}.upsamplers.0.conv.bias"
] = unet_state_dict[f"output_blocks.{i}.{index}.conv.bias"]
# Clear attentions as they have been attributed above.
if len(attentions) == 2:
attentions = []
if len(attentions):
paths = renew_attention_paths(attentions)
meta_path = {
"old": f"output_blocks.{i}.1",
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
}
assign_to_checkpoint(
paths,
new_checkpoint,
unet_state_dict,
additional_replacements=[meta_path],
config=config,
)
else:
resnet_0_paths = renew_resnet_paths(
output_block_layers, n_shave_prefix_segments=1
)
for path in resnet_0_paths:
old_path = ".".join(["output_blocks", str(i), path["old"]])
new_path = ".".join(
[
"up_blocks",
str(block_id),
"resnets",
str(layer_in_block_id),
path["new"],
]
)
new_checkpoint[new_path] = unet_state_dict[old_path]
if controlnet:
# conditioning embedding
orig_index = 0
new_checkpoint[
"controlnet_cond_embedding.conv_in.weight"
] = unet_state_dict.pop(f"input_hint_block.{orig_index}.weight")
new_checkpoint["controlnet_cond_embedding.conv_in.bias"] = unet_state_dict.pop(
f"input_hint_block.{orig_index}.bias"
)
orig_index += 2
diffusers_index = 0
while diffusers_index < 6:
new_checkpoint[
f"controlnet_cond_embedding.blocks.{diffusers_index}.weight"
] = unet_state_dict.pop(f"input_hint_block.{orig_index}.weight")
new_checkpoint[
f"controlnet_cond_embedding.blocks.{diffusers_index}.bias"
] = unet_state_dict.pop(f"input_hint_block.{orig_index}.bias")
diffusers_index += 1
orig_index += 2
new_checkpoint[
"controlnet_cond_embedding.conv_out.weight"
] = unet_state_dict.pop(f"input_hint_block.{orig_index}.weight")
new_checkpoint["controlnet_cond_embedding.conv_out.bias"] = unet_state_dict.pop(
f"input_hint_block.{orig_index}.bias"
)
# down blocks
for i in range(num_input_blocks):
new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = unet_state_dict.pop(
f"zero_convs.{i}.0.weight"
)
new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = unet_state_dict.pop(
f"zero_convs.{i}.0.bias"
)
# mid block
new_checkpoint["controlnet_mid_block.weight"] = unet_state_dict.pop(
"middle_block_out.0.weight"
)
new_checkpoint["controlnet_mid_block.bias"] = unet_state_dict.pop(
"middle_block_out.0.bias"
)
return new_checkpoint
def create_vae_diffusers_config(original_config, image_size: int):
"""
Creates a config for the diffusers based on the config of the LDM model.
"""
vae_params = original_config.model.params.first_stage_config.params.ddconfig
_ = original_config.model.params.first_stage_config.params.embed_dim
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
config = {
"sample_size": image_size,
"in_channels": vae_params.in_channels,
"out_channels": vae_params.out_ch,
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"latent_channels": vae_params.z_channels,
"layers_per_block": vae_params.num_res_blocks,
}
return config
def convert_ldm_vae_checkpoint(checkpoint, config):
# extract state dict for VAE
vae_state_dict = {}
vae_key = "first_stage_model."
keys = list(checkpoint.keys())
for key in keys:
if key.startswith(vae_key):
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
new_checkpoint = {}
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict[
"encoder.conv_out.weight"
]
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict[
"encoder.norm_out.weight"
]
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict[
"encoder.norm_out.bias"
]
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict[
"decoder.conv_out.weight"
]
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict[
"decoder.norm_out.weight"
]
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict[
"decoder.norm_out.bias"
]
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
num_down_blocks = len(
{
".".join(layer.split(".")[:3])
for layer in vae_state_dict
if "encoder.down" in layer
}
)
down_blocks = {
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key]
for layer_id in range(num_down_blocks)
}
# Retrieves the keys for the decoder up blocks only
num_up_blocks = len(
{
".".join(layer.split(".")[:3])
for layer in vae_state_dict
if "decoder.up" in layer
}
)
up_blocks = {
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key]
for layer_id in range(num_up_blocks)
}
for i in range(num_down_blocks):
resnets = [
key
for key in down_blocks[i]
if f"down.{i}" in key and f"down.{i}.downsample" not in key
]
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
new_checkpoint[
f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"
] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.weight")
new_checkpoint[
f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"
] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.bias")
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
config=config,
)
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
config=config,
)
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
config=config,
)
conv_attn_to_linear(new_checkpoint)
for i in range(num_up_blocks):
block_id = num_up_blocks - 1 - i
resnets = [
key
for key in up_blocks[block_id]
if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
]
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
new_checkpoint[
f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"
] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.weight"]
new_checkpoint[
f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"
] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.bias"]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
config=config,
)
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
paths = renew_vae_resnet_paths(resnets)
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
config=config,
)
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(
paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
config=config,
)
conv_attn_to_linear(new_checkpoint)
return new_checkpoint
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
new_item = shave_segments(
new_item, n_shave_prefix_segments=n_shave_prefix_segments
)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("norm.weight", "group_norm.weight")
new_item = new_item.replace("norm.bias", "group_norm.bias")
new_item = new_item.replace("q.weight", "to_q.weight")
new_item = new_item.replace("q.bias", "to_q.bias")
new_item = new_item.replace("k.weight", "to_k.weight")
new_item = new_item.replace("k.bias", "to_k.bias")
new_item = new_item.replace("v.weight", "to_v.weight")
new_item = new_item.replace("v.bias", "to_v.bias")
new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
new_item = new_item.replace("proj_out.bias", "to_out.0.bias")
new_item = shave_segments(
new_item, n_shave_prefix_segments=n_shave_prefix_segments
)
mapping.append({"old": old_item, "new": new_item})
return mapping
def conv_attn_to_linear(checkpoint):
keys = list(checkpoint.keys())
attn_keys = ["query.weight", "key.weight", "value.weight"]
for key in keys:
if ".".join(key.split(".")[-2:]) in attn_keys:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0, 0]
elif "proj_attn.weight" in key:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0]
def convert_from_original_zero123_ckpt(
checkpoint_path, original_config_file, extract_ema, device
):
ckpt = torch.load(checkpoint_path, map_location=device)
global_step = ckpt["global_step"]
checkpoint = ckpt["state_dict"]
del ckpt
torch.cuda.empty_cache()
from omegaconf import OmegaConf
original_config = OmegaConf.load(original_config_file)
model_type = original_config.model.params.cond_stage_config.target.split(".")[-1]
num_in_channels = 8
original_config["model"]["params"]["unet_config"]["params"][
"in_channels"
] = num_in_channels
prediction_type = "epsilon"
image_size = 256
num_train_timesteps = (
getattr(original_config.model.params, "timesteps", None) or 1000
)
beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02
beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085
scheduler = DDIMScheduler(
beta_end=beta_end,
beta_schedule="scaled_linear",
beta_start=beta_start,
num_train_timesteps=num_train_timesteps,
steps_offset=1,
clip_sample=False,
set_alpha_to_one=False,
prediction_type=prediction_type,
)
scheduler.register_to_config(clip_sample=False)
# Convert the UNet2DConditionModel model.
upcast_attention = None
unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
unet_config["upcast_attention"] = upcast_attention
with init_empty_weights():
unet = UNet2DConditionModel(**unet_config)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
checkpoint, unet_config, path=None, extract_ema=extract_ema
)
for param_name, param in converted_unet_checkpoint.items():
set_module_tensor_to_device(unet, param_name, "cpu", value=param)
# Convert the VAE model.
vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
if (
"model" in original_config
and "params" in original_config.model
and "scale_factor" in original_config.model.params
):
vae_scaling_factor = original_config.model.params.scale_factor
else:
vae_scaling_factor = 0.18215 # default SD scaling factor
vae_config["scaling_factor"] = vae_scaling_factor
with init_empty_weights():
vae = AutoencoderKL(**vae_config)
for param_name, param in converted_vae_checkpoint.items():
set_module_tensor_to_device(vae, param_name, "cpu", value=param)
feature_extractor = CLIPImageProcessor.from_pretrained(
"lambdalabs/sd-image-variations-diffusers", subfolder="feature_extractor"
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"lambdalabs/sd-image-variations-diffusers", subfolder="image_encoder"
)
clip_camera_projection = CLIPCameraProjection(additional_embeddings=4)
clip_camera_projection.load_state_dict(
{
"proj.weight": checkpoint["cc_projection.weight"].cpu(),
"proj.bias": checkpoint["cc_projection.bias"].cpu(),
}
)
pipe = Zero123Pipeline(
vae,
image_encoder,
unet,
scheduler,
None,
feature_extractor,
clip_camera_projection,
requires_safety_checker=False,
)
return pipe
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path",
default=None,
type=str,
required=True,
help="Path to the checkpoint to convert.",
)
parser.add_argument(
"--original_config_file",
default=None,
type=str,
help="The YAML config file corresponding to the original architecture.",
)
parser.add_argument(
"--extract_ema",
action="store_true",
help=(
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
),
)
parser.add_argument(
"--to_safetensors",
action="store_true",
help="Whether to store pipeline in safetensors format or not.",
)
parser.add_argument(
"--half", action="store_true", help="Save weights in half precision."
)
parser.add_argument(
"--dump_path",
default=None,
type=str,
required=True,
help="Path to the output model.",
)
parser.add_argument(
"--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)"
)
args = parser.parse_args()
pipe = convert_from_original_zero123_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
extract_ema=args.extract_ema,
device=args.device,
)
if args.half:
pipe.to(torch_dtype=torch.float16)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
|