Spaces:
Runtime error
Runtime error
File size: 10,527 Bytes
05b4326 d265dde 05b4326 040e502 05b4326 040e502 05b4326 040e502 05b4326 040e502 05b4326 d265dde 05b4326 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
# Standard library imports
from typing import Optional, Iterable
# Third-party library imports
from transformers import PretrainedConfig, AutoformerForPrediction
from functools import partial
import gradio as gr
import spaces
import torch
import pandas as pd
import plotly.graph_objects as go
from plotly.subplots import make_subplots
# External imports
# GluonTS imports
from gluonts.dataset.field_names import FieldName
from gluonts.transform import (
AddAgeFeature,
AddObservedValuesIndicator,
AddTimeFeatures,
AsNumpyArray,
Chain,
ExpectedNumInstanceSampler,
InstanceSplitter,
RemoveFields,
TestSplitSampler,
Transformation,
ValidationSplitSampler,
VstackFeatures,
RenameFields,
)
from gluonts.time_feature import time_features_from_frequency_str
from gluonts.transform.sampler import InstanceSampler
# Hugging Face Datasets imports
from datasets import Dataset, Features, Value, Sequence, load_dataset
# GluonTS Loader imports
from gluonts.dataset.loader import as_stacked_batches
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import numpy as np
def convert_to_pandas_period(date, freq):
return pd.Period(date, freq)
def transform_start_field(batch, freq):
batch["start"] = [convert_to_pandas_period(date, freq) for date in batch["start"]]
return batch
def create_transformation(freq: str, config: PretrainedConfig, prediction_length: int) -> Transformation:
remove_field_names = []
if config.num_static_real_features == 0:
remove_field_names.append(FieldName.FEAT_STATIC_REAL)
if config.num_dynamic_real_features == 0:
remove_field_names.append(FieldName.FEAT_DYNAMIC_REAL)
if config.num_static_categorical_features == 0:
remove_field_names.append(FieldName.FEAT_STATIC_CAT)
# a bit like torchvision.transforms.Compose
return Chain(
# step 1: remove static/dynamic fields if not specified
[RemoveFields(field_names=remove_field_names)]
# step 2: convert the data to NumPy (potentially not needed)
+ (
[
AsNumpyArray(
field=FieldName.FEAT_STATIC_CAT,
expected_ndim=1,
dtype=int,
)
]
if config.num_static_categorical_features > 0
else []
)
+ (
[
AsNumpyArray(
field=FieldName.FEAT_STATIC_REAL,
expected_ndim=1,
)
]
if config.num_static_real_features > 0
else []
)
+ [
AsNumpyArray(
field=FieldName.TARGET,
# we expect an extra dim for the multivariate case:
expected_ndim=1 if config.input_size == 1 else 2,
),
# step 3: handle the NaN's by filling in the target with zero
# and return the mask (which is in the observed values)
# true for observed values, false for nan's
# the decoder uses this mask (no loss is incurred for unobserved values)
# see loss_weights inside the xxxForPrediction model
AddObservedValuesIndicator(
target_field=FieldName.TARGET,
output_field=FieldName.OBSERVED_VALUES,
),
# step 4: add temporal features based on freq of the dataset
# and the desired prediction length
AddTimeFeatures(
start_field=FieldName.START,
target_field=FieldName.TARGET,
output_field=FieldName.FEAT_TIME,
time_features=time_features_from_frequency_str(freq),
pred_length=prediction_length,
),
# step 5: add another temporal feature (just a single number)
# tells the model where in its life the value of the time series is,
# sort of a running counter
AddAgeFeature(
target_field=FieldName.TARGET,
output_field=FieldName.FEAT_AGE,
pred_length=prediction_length,
log_scale=True,
),
# step 6: vertically stack all the temporal features into the key FEAT_TIME
VstackFeatures(
output_field=FieldName.FEAT_TIME,
input_fields=[FieldName.FEAT_TIME, FieldName.FEAT_AGE]
+ (
[FieldName.FEAT_DYNAMIC_REAL]
if config.num_dynamic_real_features > 0
else []
),
),
# step 7: rename to match HuggingFace names
RenameFields(
mapping={
FieldName.FEAT_STATIC_CAT: "static_categorical_features",
FieldName.FEAT_STATIC_REAL: "static_real_features",
FieldName.FEAT_TIME: "time_features",
FieldName.TARGET: "values",
FieldName.OBSERVED_VALUES: "observed_mask",
}
),
]
)
def create_instance_splitter(
config: PretrainedConfig,
mode: str,
prediction_length: int,
train_sampler: Optional[InstanceSampler] = None,
validation_sampler: Optional[InstanceSampler] = None,
) -> Transformation:
assert mode in ["train", "validation", "test"]
instance_sampler = {
"train": train_sampler
or ExpectedNumInstanceSampler(
num_instances=1.0, min_future=prediction_length
),
"validation": validation_sampler
or ValidationSplitSampler(min_future=prediction_length),
"test": TestSplitSampler(),
}[mode]
return InstanceSplitter(
target_field="values",
is_pad_field=FieldName.IS_PAD,
start_field=FieldName.START,
forecast_start_field=FieldName.FORECAST_START,
instance_sampler=instance_sampler,
past_length=config.context_length + max(config.lags_sequence),
future_length=prediction_length,
time_series_fields=["time_features", "observed_mask"],
)
def create_test_dataloader(
config: PretrainedConfig,
freq: str,
data: Dataset,
batch_size: int,
prediction_length: int,
**kwargs,
):
PREDICTION_INPUT_NAMES = [
"past_time_features",
"past_values",
"past_observed_mask",
"future_time_features",
]
if config.num_static_categorical_features > 0:
PREDICTION_INPUT_NAMES.append("static_categorical_features")
if config.num_static_real_features > 0:
PREDICTION_INPUT_NAMES.append("static_real_features")
transformation = create_transformation(freq, config, prediction_length)
transformed_data = transformation.apply(data, is_train=False)
# we create a Test Instance splitter which will sample the very last
# context window seen during training only for the encoder.
instance_sampler = create_instance_splitter(
config, "test", prediction_length=prediction_length
)
# we apply the transformations in test mode
testing_instances = instance_sampler.apply(transformed_data, is_train=False)
return as_stacked_batches(
testing_instances,
batch_size=batch_size,
output_type=torch.tensor,
field_names=PREDICTION_INPUT_NAMES,
)
def plot(ts_index, test_dataset, forecasts, prediction_length):
# Length of the target data
target_length = len(test_dataset[ts_index]['target'])
# Creating a period range for the entire dataset plus forecast period
index = pd.period_range(
start=test_dataset[ts_index]['start'],
periods=target_length + prediction_length,
freq='1D'
).to_timestamp()
# Plotting actual data
actual_data = go.Scatter(
x=index[:target_length],
y=test_dataset[ts_index]['target'],
name="Actual",
mode='lines',
)
# Plotting the forecast data
forecast_data = go.Scatter(
x=index[target_length:],
y=forecasts[ts_index][0][:prediction_length],
name="Prediction",
mode='lines',
)
# Create the figure
fig = make_subplots(rows=1, cols=1)
fig.add_trace(actual_data, row=1, col=1)
fig.add_trace(forecast_data, row=1, col=1)
# Set layout and title
fig.update_layout(
xaxis_title="Date",
yaxis_title="Value",
title="Actual vs. Predicted Values",
xaxis_rangeslider_visible=True,
)
return fig
def do_prediction(days_to_predict: int):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Define the desired prediction length
prediction_length = 7 # Number of time steps to predict into the future
freq = "1D" # Daily frequency
dataset = load_dataset("thesven/BTC-Daily-Avg-Market-Value")
dataset['test'].set_transform(partial(transform_start_field, freq=freq))
model = AutoformerForPrediction.from_pretrained("thesven/BTC-Autoformer-v1")
config = model.config
print(f"Config: {config}")
test_dataloader = create_test_dataloader(
config=config,
freq=freq,
data=dataset['test'],
batch_size=64,
prediction_length=prediction_length,
)
model.to(device)
model.eval()
forecasts = []
for batch in test_dataloader:
outputs = model.generate(
static_categorical_features=batch["static_categorical_features"].to(device)
if config.num_static_categorical_features > 0
else None,
static_real_features=batch["static_real_features"].to(device)
if config.num_static_real_features > 0
else None,
past_time_features=batch["past_time_features"].to(device),
past_values=batch["past_values"].to(device),
future_time_features=batch["future_time_features"].to(device),
past_observed_mask=batch["past_observed_mask"].to(device),
)
forecasts.append(outputs.sequences.cpu().numpy())
forecasts = np.vstack(forecasts)
print(forecasts.shape)
return plot(0, dataset['test'], forecasts, prediction_length)
interface = gr.Interface(
fn=do_prediction,
inputs=gr.Slider(minimum=1, maximum=30, step=1, label="Days to Predict"),
outputs="plot",
title="Prediction Plot",
description="Adjust the slider to set the number of days to predict.",
allow_flagging=False, # Disable flagging for simplicity
)
interface.launch()
|