Spaces:
Sleeping
Sleeping
File size: 3,144 Bytes
3fcc660 8239fe8 3fcc660 1e22887 3fcc660 4775a16 3fcc660 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import gradio as gr
import torch
import uuid
from PIL import Image
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
from typing import Union, List
from loadimg import load_img # Your helper to load from URL or file
torch.set_float32_matmul_precision("high")
# Load BiRefNet model
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
birefnet.to(device)
# Image transformation
transform_image = transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def process(image: Image.Image) -> Image.Image:
image_size = image.size
input_tensor = transform_image(image).unsqueeze(0).to(device)
with torch.no_grad():
preds = birefnet(input_tensor)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
mask = transforms.ToPILImage()(pred).resize(image_size).convert("L")
binary_mask = mask.point(lambda p: 255 if p > 127 else 0)
white_bg = Image.new("RGB", image_size, (255, 255, 255))
result = Image.composite(image, white_bg, binary_mask)
return result
def handler(image=None, image_url=None, batch_urls=None) -> Union[str, List[str], None]:
results = []
try:
# Single image upload
if image is not None:
image = image.convert("RGB")
processed = process(image)
filename = f"output_{uuid.uuid4().hex[:8]}.png"
processed.save(filename)
return filename
# Single image from URL
if image_url:
im = load_img(image_url, output_type="pil").convert("RGB")
processed = process(im)
filename = f"output_{uuid.uuid4().hex[:8]}.png"
processed.save(filename)
return filename
# Batch of URLs
if batch_urls:
urls = [u.strip() for u in batch_urls.split(",") if u.strip()]
for url in urls:
try:
im = load_img(url, output_type="pil").convert("RGB")
processed = process(im)
filename = f"output_{uuid.uuid4().hex[:8]}.png"
processed.save(filename)
results.append(filename)
except Exception as e:
print(f"Error with {url}: {e}")
return results if results else None
except Exception as e:
print("General error:", e)
return None
# Interface
demo = gr.Interface(
fn=handler,
inputs=[
gr.Image(label="Upload Image", type="pil"),
gr.Textbox(label="Paste Image URL"),
gr.Textbox(label="Comma-separated Image URLs (Batch)"),
],
outputs=gr.File(label="Output File(s)", file_count="multiple"),
title="Background Remover (White Fill)",
description="Upload an image, paste a URL, or send a batch of URLs to remove the background and replace it with white.",
)
if __name__ == "__main__":
demo.launch(show_error=True, mcp_server=True) |