File size: 4,172 Bytes
510ee71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import gradio as gr
from backend.lcm_text_to_image import LCMTextToImage
from backend.models.lcmdiffusion_setting import LCMLora, LCMDiffusionSetting
from constants import DEVICE, LCM_DEFAULT_MODEL_OPENVINO
from time import perf_counter
import numpy as np
from cv2 import imencode
import base64
from backend.device import get_device_name
from constants import APP_VERSION
from backend.device import is_openvino_device

lcm_text_to_image = LCMTextToImage()
lcm_lora = LCMLora(
    base_model_id="Lykon/dreamshaper-8",
    lcm_lora_id="latent-consistency/lcm-lora-sdv1-5",
)


# https://github.com/gradio-app/gradio/issues/2635#issuecomment-1423531319
def encode_pil_to_base64_new(pil_image):
    image_arr = np.asarray(pil_image)[:, :, ::-1]
    _, byte_data = imencode(".png", image_arr)
    base64_data = base64.b64encode(byte_data)
    base64_string_opencv = base64_data.decode("utf-8")
    return "data:image/png;base64," + base64_string_opencv


# monkey patching encode pil
gr.processing_utils.encode_pil_to_base64 = encode_pil_to_base64_new


def predict(
    prompt,
    steps,
    seed,
):
    lcm_diffusion_setting = LCMDiffusionSetting()
    lcm_diffusion_setting.openvino_lcm_model_id = "rupeshs/sdxs-512-0.9-openvino"
    lcm_diffusion_setting.prompt = prompt
    lcm_diffusion_setting.guidance_scale = 1.0
    lcm_diffusion_setting.inference_steps = steps
    lcm_diffusion_setting.seed = seed
    lcm_diffusion_setting.use_seed = True
    lcm_diffusion_setting.image_width = 512
    lcm_diffusion_setting.image_height = 512
    lcm_diffusion_setting.use_openvino = True if is_openvino_device() else False
    lcm_diffusion_setting.use_tiny_auto_encoder = True
    lcm_text_to_image.init(
        DEVICE,
        lcm_diffusion_setting,
    )
    start = perf_counter()

    images = lcm_text_to_image.generate(lcm_diffusion_setting)
    latency = perf_counter() - start
    print(f"Latency: {latency:.2f} seconds")
    return images[0]


css = """
#container{
    margin: 0 auto;
    max-width: 40rem;
}
#intro{
    max-width: 100%;
    text-align: center;
    margin: 0 auto;
}
#generate_button {
    color: white;
    border-color: #007bff;
    background: #007bff;
    width: 200px;
    height: 50px;
}
footer {
    visibility: hidden
}
"""


def _get_footer_message() -> str:
    version = f"<center><p> {APP_VERSION} "
    footer_msg = version + (
        '  © 2023 - 2024 <a href="https://github.com/rupeshs">'
        " Rupesh Sreeraman</a></p></center>"
    )
    return footer_msg


with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="container"):
        use_openvino = "- OpenVINO" if is_openvino_device() else ""
        gr.Markdown(
            f"""# Realtime FastSD CPU {use_openvino}
               **Device : {DEVICE} , {get_device_name()}**
            """,
            elem_id="intro",
        )

        with gr.Row():
            with gr.Row():
                prompt = gr.Textbox(
                    placeholder="Describe the image you'd like to see",
                    scale=5,
                    container=False,
                )
                generate_btn = gr.Button(
                    "Generate",
                    scale=1,
                    elem_id="generate_button",
                )

        image = gr.Image(type="filepath")

        steps = gr.Slider(
            label="Steps",
            value=1,
            minimum=1,
            maximum=6,
            step=1,
            visible=False,
        )
        seed = gr.Slider(
            randomize=True,
            minimum=0,
            maximum=999999999,
            label="Seed",
            step=1,
        )
        gr.HTML(_get_footer_message())

        inputs = [prompt, steps, seed]
        prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False)
        generate_btn.click(
            fn=predict, inputs=inputs, outputs=image, show_progress=False
        )
        steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
        seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)


def start_realtime_text_to_image(share=False):
    demo.queue()
    demo.launch(share=share)