File size: 48,379 Bytes
45d451e 86e0603 0fbb5f2 86e0603 45d451e 1d301f6 82d44c7 00fc4b2 82d44c7 941679b d8403a5 00fc4b2 a65f447 00fc4b2 6a2f7be 00fc4b2 286e0ad e002e58 82d44c7 00fc4b2 e002e58 00fc4b2 d8403a5 00fc4b2 286e0ad 82d44c7 d8403a5 82d44c7 d8403a5 00fc4b2 d8403a5 00fc4b2 d8403a5 00fc4b2 d8403a5 00fc4b2 51ad2dc aab6dab 34589b2 51ad2dc d8403a5 00fc4b2 82d44c7 00fc4b2 d8403a5 00fc4b2 12cc4bb 00fc4b2 bd58e00 00fc4b2 bd58e00 00fc4b2 12cc4bb 00fc4b2 d8403a5 00fc4b2 82d44c7 00fc4b2 82d44c7 00fc4b2 82d44c7 d8403a5 00fc4b2 82d44c7 00fc4b2 57c1fc4 00fc4b2 c66b120 2a42b19 00fc4b2 57c1fc4 00fc4b2 57c1fc4 00fc4b2 d8403a5 00fc4b2 d8403a5 9a0fbfc 00fc4b2 8de5feb 223c771 8de5feb 234072a 14f8185 223c771 8de5feb 57c1fc4 00fc4b2 51ad2dc 00fc4b2 82d44c7 d8403a5 59dd725 d8403a5 00fc4b2 9a0fbfc 59dd725 d8403a5 00fc4b2 d8403a5 223c771 14f8185 8de5feb 223c771 1d6dd60 8de5feb 223c771 bf9e3ea 8de5feb 0727f36 bf9e3ea 00fc4b2 d8403a5 00fc4b2 8de5feb 223c771 8de5feb 82d44c7 8de5feb 286e0ad 8de5feb 889625a 8de5feb 889625a 8de5feb 59dd725 889625a 59dd725 8de5feb ce5db0a 8de5feb ce5db0a 8de5feb 223c771 8de5feb 0796124 8936786 59dd725 0796124 8de5feb 223c771 d8403a5 edcec9b a477ef9 edcec9b 1347586 245be7f 39deabf 1347586 edcec9b 9bfd2c9 62cd513 8936786 edcec9b ae07aa9 82d44c7 00fc4b2 82d44c7 00fc4b2 82d44c7 00fc4b2 82d44c7 eddec9f 9e7abe1 36f6a1c 1347586 889625a 82d44c7 87b48d6 00fc4b2 82d44c7 d8403a5 82d44c7 00fc4b2 d8403a5 a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 45d451e a1f7705 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 |
# import gradio as gr
# from huggingface_hub import InferenceClient
# import json
# import random
# import re
# from load_data import load_data
# from openai import OpenAI
# from transformers import AutoTokenizer, AutoModel
# import weaviate
# import os
# import torch
# from tqdm import tqdm
# import numpy as np
# import time
# # 设置缓存目录
# os.environ['MPLCONFIGDIR'] = '/tmp/matplotlib'
# os.environ['TRANSFORMERS_CACHE'] = '/tmp/huggingface_cache'
# os.makedirs(os.environ['MPLCONFIGDIR'], exist_ok=True)
# os.makedirs(os.environ['TRANSFORMERS_CACHE'], exist_ok=True)
# # Weaviate 连接配置
# WEAVIATE_API_KEY = "Y7c8DRmcxZ4nP5IJLwkznIsK84l6EdwfXwcH"
# WEAVIATE_URL = "https://39nlafviqvard82k6y8btq.c0.asia-southeast1.gcp.weaviate.cloud"
# weaviate_auth_config = weaviate.AuthApiKey(api_key=WEAVIATE_API_KEY)
# weaviate_client = weaviate.Client(url=WEAVIATE_URL, auth_client_secret=weaviate_auth_config)
# # 预训练模型配置
# MODEL_NAME = "bert-base-chinese"
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# model = AutoModel.from_pretrained(MODEL_NAME)
# # OpenAI 客户端
# openai_client = None
# def initialize_openai_client(api_key):
# global openai_client
# openai_client = OpenAI(api_key=api_key)
# def extract_keywords(text):
# prompt = """
# 你是一个关键词提取机器人。提取用户输入中的关键词,特别是名词和形容词,关键词之间用空格分隔。例如:苹果 电脑 裤子 蓝色 裙。
# """
# messages = [
# {"role": "system", "content": prompt},
# {"role": "user", "content": f"从下面的文本中提取五个关键词,以空格分隔:{text}"}
# ]
# response = openai_client.chat.completions.create(
# model="gpt-3.5-turbo",
# messages=messages,
# max_tokens=100,
# temperature=0.7,
# top_p=0.9,
# )
# keywords = response.choices[0].message.content.split(' ')
# return ','.join(keywords)
# def match_keywords(query_keywords, ad_keywords_list, triggered_keywords, current_turn, window_size, threshold):
# best_match_distance = 0
# best_match_index = -1
# for i, ad_keywords in enumerate(ad_keywords_list):
# match_count = sum(
# any(
# ad_keyword in keyword and
# (keyword not in triggered_keywords or current_turn - triggered_keywords[keyword] > window_size)
# ) for keyword in query_keywords
# )
# if match_count > best_match_distance:
# best_match_distance = match_count
# best_match_index = i
# if best_match_distance >= threshold:
# for keyword in query_keywords:
# if any(ad_keyword in keyword for ad_keyword in ad_keywords_list[best_match_index]):
# triggered_keywords[keyword] = current_turn
# return best_match_distance, best_match_index
# def encode_keywords_to_avg(keywords, model, tokenizer, device):
# embeddings = []
# for keyword in tqdm(keywords):
# inputs = tokenizer(keyword, return_tensors='pt', padding=True, truncation=True, max_length=512)
# inputs.to(device)
# with torch.no_grad():
# outputs = model(**inputs)
# embeddings.append(outputs.last_hidden_state.mean(dim=1))
# avg_embedding = sum(embeddings) / len(embeddings)
# return avg_embedding
# def get_response_from_db(keywords_dict, class_name):
# avg_vec = encode_keywords_to_avg(keywords_dict.keys(), model, tokenizer, device).numpy()
# response = (
# weaviate_client.query
# .get(class_name, ['keywords', 'summary'])
# .with_near_vector({'vector': avg_vec})
# .with_limit(1)
# .with_additional(['distance'])
# .do()
# )
# if class_name.capitalize() in response['data']['Get']:
# result = response['data']['Get'][class_name.capitalize()][0]
# return result['_additional']['distance'], result['summary'], result['keywords']
# else:
# return None, None, None
# def chatbot_response(message, max_tokens, temperature, top_p, window_size, threshold, user_weight, triggered_weight, api_key, state):
# initialize_openai_client(api_key)
# history = state.get('history', [])
# triggered_keywords = state.get('triggered_keywords', {})
# current_turn = len(history) + 1
# combined_user_message = " ".join([h[0] for h in history[-window_size:]] + [message])
# combined_assistant_message = " ".join([h[1] for h in history[-window_size:]])
# user_keywords = extract_keywords(combined_user_message).split(',')
# assistant_keywords = extract_keywords(combined_assistant_message).split(',')
# keywords_dict = {keyword: user_weight for keyword in user_keywords}
# for keyword in assistant_keywords:
# keywords_dict[keyword] = keywords_dict.get(keyword, 0) + 1
# for keyword in list(keywords_dict.keys()):
# if keyword in triggered_keywords and current_turn - triggered_keywords[keyword] < window_size:
# keywords_dict[keyword] = triggered_weight
# distance, ad_summary, ad_keywords = get_response_from_db(keywords_dict, class_name="ad_DB02")
# if distance and distance < threshold:
# ad_message = f"{message} <sep>品牌<sep>{ad_summary}"
# messages = [{"role": "system", "content": "你是一个热情的聊天机器人,应微妙地嵌入广告内容。"}]
# for msg in history:
# messages.extend([{"role": "user", "content": msg[0]}, {"role": "assistant", "content": msg[1]}])
# messages.append({"role": "user", "content": ad_message})
# for keyword in keywords_dict.keys():
# if any(ad_keyword in keyword for ad_keyword in ad_keywords.split(',')):
# triggered_keywords[keyword] = current_turn
# else:
# messages = [{"role": "system", "content": "你是一个热情的聊天机器人。"}]
# for msg in history:
# messages.extend([{"role": "user", "content": msg[0]}, {"role": "assistant", "content": msg[1]}])
# messages.append({"role": "user", "content": message})
# response = openai_client.chat.completions.create(
# model="gpt-3.5-turbo",
# messages=messages,
# max_tokens=max_tokens,
# temperature=temperature,
# top_p=top_p,
# )
# history.append((message, response.choices[0].message.content))
# state['history'] = history
# state['triggered_keywords'] = triggered_keywords
# return response.choices[0].message.content, state
# # Gradio UI
# demo = gr.Interface(
# fn=chatbot_response,
# inputs=[
# gr.Textbox(label="Message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
# gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Window size"),
# gr.Slider(minimum=0.01, maximum=0.20, value=0.08, step=0.01, label="Distance threshold"),
# gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Weight of keywords from users"),
# gr.Slider(minimum=0, maximum=2, value=0.5, step=0.5, label="Weight of triggered keywords"),
# gr.Textbox(label="API Key"),
# gr.State(value={'history': [], 'triggered_keywords': {}}) # Combined state
# ],
# outputs=[
# gr.Textbox(label="Response"),
# gr.State() # Return the updated state
# ]
# )
# if __name__ == "__main__":
# demo.launch(share=True)
import gradio as gr
from huggingface_hub import InferenceClient
import json
import random
import re
from load_data import load_data
from openai import OpenAI
from transformers import AutoTokenizer, AutoModel
import weaviate
import os
import torch
from tqdm import tqdm
import numpy as np
import time
import requests
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
# 设置缓存目录
os.environ['MPLCONFIGDIR'] = '/tmp/matplotlib'
os.environ['TRANSFORMERS_CACHE'] = '/tmp/huggingface_cache'
os.makedirs(os.environ['MPLCONFIGDIR'], exist_ok=True)
os.makedirs(os.environ['TRANSFORMERS_CACHE'], exist_ok=True)
# Weaviate 连接配置
# 预训练模型配置
MODEL_NAME = "BAAI/bge-large-zh-v1.5"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModel.from_pretrained(MODEL_NAME)
# OpenAI 客户端
openai_client = None
def initialize_openai_client(api_key):
global openai_client
openai_client = OpenAI(api_key=api_key)
def extract_keywords(text):
prompt = """
你的任务是从用户的输入中提取关键词,特别是名词和形容词,输出关键词之间用空格分隔。例如:苹果 电脑 裤子 蓝色 裙。
注意:
1.不要重复输出关键词,如果输入内容较短,你可以输出少于五个关键词,但至少输出两个
2.对于停用词不要进行输出,停用词如各类人称代词,连词等
3.关键词应该严格是名词和形容词,不要输出动词等其他词性
4.输出格式为关键词之间用空格分隔,例如:苹果 电脑 裤子 蓝色 裙
"""
messages = [
{"role": "system", "content": prompt},
{"role": "user", "content": f"从下面的文本中提取五个名词或形容词词性的关键词,以空格分隔:例子:她穿着蓝色的裙子,坐在电脑前,一边吃苹果一边看着裤子的购物网站。 输出:苹果 电脑 裤子 蓝色 裙\n\n 文本:{text}"}
]
response = openai_client.chat.completions.create(
model="gpt-4o",
messages=messages,
max_tokens=100,
temperature=0.7,
top_p=0.9,
)
keywords = response.choices[0].message.content.split(' ')
return ','.join(keywords)
# def match_keywords(query_keywords, ad_keywords_list, triggered_keywords, current_turn, window_size, threshold):
# best_match_distance = 0
# best_match_index = -1
# for i, ad_keywords in enumerate(ad_keywords_list):
# match_count = sum(
# any(
# ad_keyword in keyword and
# (keyword not in triggered_keywords or current_turn - triggered_keywords[keyword] > window_size)
# ) for keyword in query_keywords
# )
# if match_count > best_match_distance:
# best_match_distance = match_count
# best_match_index = i
# if best_match_distance >= threshold:
# for keyword in query_keywords:
# if any(ad_keyword in keyword for ad_keyword in ad_keywords_list[best_match_index]):
# triggered_keywords[keyword] = current_turn
# return best_match_distance, best_match_index
def initialize_weaviate_client():
global weaviate_client
retry_strategy = Retry(
total=3, # 总共重试次数
status_forcelist=[429, 500, 502, 503, 504], # 需要重试的状态码
allowed_methods=["HEAD", "GET", "OPTIONS", "POST"], # 需要重试的方法
backoff_factor=1 # 重试间隔时间的倍数
)
adapter = HTTPAdapter(max_retries=retry_strategy)
http = requests.Session()
http.mount("https://", adapter)
http.mount("http://", adapter)
timeout = 5
WEAVIATE_API_KEY = "RhHxDEJwNWf14qQj982aaGOa0JepD7vtnsnq"
WEAVIATE_URL = "https://f5owzd1vqjilrbwg4zu7w.c0.us-west3.gcp.weaviate.cloud"
weaviate_auth_config = weaviate.AuthApiKey(api_key=WEAVIATE_API_KEY)
def create_client():
return weaviate.Client(
url=WEAVIATE_URL,
auth_client_secret=weaviate_auth_config,
timeout_config=(timeout, timeout)
)
try:
weaviate_client = create_client()
except Exception as e:
print(f"连接超时,重新连接")
weaviate_client = create_client()
def encode_keywords_to_avg(keywords, model, tokenizer, device):
embeddings = []
for keyword in tqdm(keywords):
inputs = tokenizer(keyword, return_tensors='pt', padding=True, truncation=True, max_length=512)
inputs.to(device)
with torch.no_grad():
outputs = model(**inputs)
embeddings.append(outputs.last_hidden_state.mean(dim=1))
avg_embedding = sum(embeddings) / len(embeddings)
return avg_embedding
def encode_keywords_to_list(keywords, model, tokenizer, device):
start_time = time.time()
embeddings = []
model.to(device)
for keyword in tqdm(keywords):
inputs = tokenizer(keyword, return_tensors='pt', padding=True, truncation=True, max_length=512)
inputs = {key: value.to(device) for key, value in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
embeddings.append(outputs.last_hidden_state.mean(dim=1).squeeze().tolist())
end_time=time.time()
print(f"Time taken for encoding: {end_time - start_time}")
return embeddings
def get_response_from_db(keywords_dict, class_name):
avg_vec = encode_keywords_to_avg(keywords_dict.keys(), model, tokenizer, device).numpy()
response = (
weaviate_client.query
.get(class_name, ['keywords', 'summary'])
.with_near_vector({'vector': avg_vec})
.with_limit(1)
.with_additional(['distance'])
.do()
)
if class_name.capitalize() in response['data']['Get']:
result = response['data']['Get'][class_name.capitalize()][0]
return result['_additional']['distance'], result['summary'], result['keywords']
else:
return None, None, None
def get_candidates_from_db(keywords_dict, class_name,limit=3):
embeddings= encode_keywords_to_list(keywords_dict.keys(), model, tokenizer, device)
candidate_list=[]
for embedding in embeddings:
response = (
weaviate_client.query
.get(class_name, ['group_id','keyword_list','keyword', 'summary'])
.with_near_vector({'vector': embedding})
.with_limit(limit)
.with_additional(['distance'])
.do()
)
class_name=class_name[0].upper()+class_name[1:]
if class_name in response['data']['Get']:
results = response['data']['Get'][class_name]
for result in results:
candidate_list.append({
'distance': result['_additional']['distance'],
'group_id': result['group_id'],
'keyword_list':result['keyword_list'],
'summary': result['summary'],
'keyword': result['keyword']
})
return candidate_list
triggered_keywords = {}
# def keyword_match(keywords_dict,candidates):
# for candidate in candidates:
# keywords=candidate['keywords'].split('*')
# candidate_keywords_list=[keyword.split('#')[1] for keyword in keywords if '#' in keyword]
# # print(keywords_dict.keys())
# print(f"nowdebug candidatekeywordslist{candidate_keywords_list}")
# for keyword in keywords_dict.keys():
# if any(candidate_keyword in keyword for candidate_keyword in candidate_keywords_list):
# # triggered_keywords[keyword]=True
# print(f"candidate_keyword{candidate_keywords_list},,,,,,,keyword{keyword}")
# return candidate['distance'],candidate['summary'],candidate['keywords']
# return 1000,None,None
def first_keyword_match(keywords_dict,keyword_match_threshold=2):
if not keywords_dict:
return None,None
data=load_data("train_2000_modified.json",2000)
keywords=[dt['content'] for dt in data]
max_matches=0
index=0
for i, lst in enumerate(keywords):
list=lst.split(',')
matches=sum(any(ad_keyword in keyword for keyword in keywords_dict.keys()) for ad_keyword in list)
if matches>max_matches:
max_matches=matches
index=i
if max_matches<=keyword_match_threshold:
return None,None
return data[index]['summary'],keywords[index]
def chatbot_response(message, history, window_size, threshold, score_threshold,user_weight, triggered_weight,candidate_length,api_key):
#初始化openai client
initialize_openai_client(api_key)
initialize_weaviate_client()
#更新轮次,获取窗口历史
current_turn = len(history) + 1
combined_user_message = message
combined_assistant_message = ""
for i in range(1, window_size + 1):
if len(history) >= i:
if i % 2 == 1: # 奇数轮次,添加 assistant 的内容
combined_assistant_message = " ".join([history[-i][1], combined_assistant_message]).strip()
else: # 偶数轮次,添加 user 的内容
combined_user_message = " ".join([history[-i][0], combined_user_message]).strip()
#提取关键词
user_keywords = extract_keywords(combined_user_message).split(',')
#获取关键词字典
keywords_dict = {keyword: user_weight for keyword in user_keywords}
#根据上下文轮数更新关键词列表长度
max_size = 6 * window_size
if len(keywords_dict) > max_size:
keywords_dict = dict(list(keywords_dict.items())[-max_size:])
if combined_assistant_message:
assistant_keywords = extract_keywords(combined_assistant_message).split(',')
for keyword in assistant_keywords:
keywords_dict[keyword] = keywords_dict.get(keyword, 0) + 1
for keyword in list(keywords_dict.keys()):
if keyword in triggered_keywords and current_turn - triggered_keywords[keyword] < window_size:
keywords_dict[keyword] = triggered_weight
start_time = time.time()
ad_summary,ad_keywords=first_keyword_match(keywords_dict)
#关键词匹配命中
end_time = time.time()
print(f"Time taken for first keyword match: {end_time - start_time}")
if ad_summary:
brands=['腾讯','阿里巴巴','百度','京东','华为','小米','苹果','微软','谷歌','亚马逊']
brand=random.choice(brands)
ad_message = f"{message} <sep>品牌{brand}<sep>{ad_summary}"
print(f"ad_sumamry: {ad_summary}")
messages = [{"role": "system", "content": "请你将生活化、原汁原味的语言提炼出来,具有亲切感,类似于拉家常的方式推销商品,具有融洽的氛围和口语化的语言。请直接输出融合的对话文本。"}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": ad_message})
for keyword in keywords_dict.keys():
if any(ad_keyword in keyword for ad_keyword in ad_keywords.split(',')):
triggered_keywords[keyword] = current_turn
#关键词不中
else:
start_time=time.time()
# distance, ad_summary, ad_keywords = get_response_from_db(keywords_dict, class_name="ad_DB02")
#数据库索引,数据库关键词平均方式
candidates=get_candidates_from_db(keywords_dict, class_name="Ad_DB10",limit=candidate_length)
candidates.sort(key=lambda x:x['distance'])
candidates=[candidate for candidate in candidates if candidate['distance']<threshold]
print("----------------------------------------------------------------------")
print(f"keywords:{keywords_dict.keys()}")
print(f"candidates:{candidates[:5]}")
#此时的候选集中所有元素都至少有一个关键词命中了
#筛选后的候选集进行投票,选出被投票最多的一条
#投中第一个元素加双倍权重
group_scores={}
if(candidates):
for candidate in candidates:
group_id=candidate['group_id']
keyword = candidate['keyword']
keyword_list = candidate['keyword_list'].split(',')
# 检查 keyword 是否是 keyword_list 中的第一个元素
if keyword in user_keywords:
if keyword == keyword_list[0]:
score = 6
else:
score = 2
else:
if keyword == keyword_list[0]:
score = 3
else:
score = 1
if keyword in triggered_keywords and current_turn - triggered_keywords[keyword] < window_size:
if(keyword == keyword_list[0]):
score = triggered_weight*3
else:
keywords_dict[keyword] = triggered_weight
# 更新 group_scores 字典中的分数
if group_id in group_scores:
group_scores[group_id] += score
else:
group_scores[group_id] = score
distance=1000
if group_scores:
max_group_id = max(group_scores, key=group_scores.get)
max_score = group_scores[max_group_id]
if(max_score>=score_threshold):
distance,ad_summary,ad_keywords=[(candidate['distance'],candidate['summary'],candidate['keyword_list']) for candidate in candidates if candidate['group_id']==max_group_id][0]
#触发->标记触发词
for keyword in keywords_dict.keys():
if any(ad_keyword in keyword for ad_keyword in ad_keywords.split(',')):
triggered_keywords[keyword] = current_turn
print("ad_keywords: ", ad_keywords)
if group_scores:
sorted_group_scores = sorted(group_scores.items(), key=lambda item: item[1], reverse=True)
print(f"group_scores: {sorted_group_scores}")
end_time=time.time()
print(f"Time taken for vecDB: {end_time - start_time}")
if distance < 1000:
pass
else:
messages = [{"role": "system", "content": "你是一个热情的聊天机器人。"}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
if ad_summary:
raw_initial_response=openai_client.chat.completions.create(
model="gpt-4o",
messages=[{"role": "user", "content": message}],
)
initial_response=raw_initial_response.choices[0].message.content
brands=['腾讯','阿里巴巴','百度','京东','华为','小米','苹果','微软','谷歌','亚马逊']
brand=random.choice(brands)
fusion_message=f"用户输入(上下文):\n{message}\n\n原始回复:\n{initial_response}\n\n广告信息:\n来自{brand}品牌:{ad_summary}"
with open("system_prompt.txt","r") as f:
system_prompt=f.read()
print(f"fusion_message: {fusion_message} ")
fusion_messages=[{"role":"system","content":system_prompt}]
# fusion_messages=[{"role":"system","content":"请在原回复中巧妙地插入带有广告品牌的广告描述,使得插入后的回复尽可能与前后文都连贯,插入位置和连接方式请根据上下文决定,注意:请只输出插入广告后的回复,不要输出任何其他的信息"}]
fusion_messages.append({"role":"user","content":fusion_message})
response = openai_client.chat.completions.create(
model="gpt-4o",
messages=fusion_messages
)
else:
messages = [{"role": "system", "content": "你是一个热情的聊天机器人。你的所有回复应该是简短的一段式回答,不要过于冗长。"}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = openai_client.chat.completions.create(
model="gpt-4o",
messages=messages,
)
print(f"triggered_keywords: {triggered_keywords}")
return response.choices[0].message.content
# Gradio UI
demo = gr.ChatInterface(
chatbot_response,
additional_inputs=[
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
gr.Slider(minimum=1, maximum=5, value=3, step=1, label="Window size"),
gr.Slider(minimum=0.01, maximum=0.3, value=0.25, step=0.01, label="Distance threshold"),
gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Score threshold"),
gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Weight of keywords from users"),
gr.Slider(minimum=0, maximum=2, value=0.5, step=0.5, label="Weight of triggered keywords"),
gr.Slider(minimum=0, maximum=100, value=30, step=5, label="Number of candidates"),
gr.Textbox(label="API Key"),
],
)
if __name__ == "__main__":
demo.launch(share=True)
print("happyhappyhappy")
# import gradio as gr
# from huggingface_hub import InferenceClient
# import json
# import random
# import re
# from load_data import load_data
# from openai import OpenAI
# from transformers import AutoTokenizer, AutoModel
# import weaviate
# import os
# import subprocess
# import torch
# from tqdm import tqdm
# import numpy as np
# import time
# # 设置 Matplotlib 的缓存目录
# os.environ['MPLCONFIGDIR'] = '/tmp/matplotlib'
# # 设置 Hugging Face Transformers 的缓存目录
# os.environ['TRANSFORMERS_CACHE'] = '/tmp/huggingface_cache'
# # 确保这些目录存在
# os.makedirs(os.environ['MPLCONFIGDIR'], exist_ok=True)
# os.makedirs(os.environ['TRANSFORMERS_CACHE'], exist_ok=True)
# auth_config = weaviate.AuthApiKey(api_key="Y7c8DRmcxZ4nP5IJLwkznIsK84l6EdwfXwcH")
# URL = "https://39nlafviqvard82k6y8btq.c0.asia-southeast1.gcp.weaviate.cloud"
# # Connect to a WCS instance
# db_client = weaviate.Client(
# url=URL,
# auth_client_secret=auth_config
# )
# class_name="ad_DB02"
# device = torch.device(device='cuda' if torch.cuda.is_available() else 'cpu')
# tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
# model = AutoModel.from_pretrained("bert-base-chinese")
# global_api_key = None
# client = None
# def initialize_clients(api_key):
# global client
# client = OpenAI(api_key=api_key)
# def get_keywords(message):
# system_message = """
# # 角色
# 你是一个关键词提取机器人
# # 指令
# 你的目标是从用户的输入中提取关键词,这些关键词应该尽可能是购买意图相关的。关键词中应该尽可能注意那些名词和形容词
# # 输出格式
# 你应该直接输出关键词,关键词之间用空格分隔。例如:苹果 电脑 裤子 蓝色 裙
# # 注意:如果输入文本过短可以重复输出关键词,例如对输入“你好”可以输出:你好 你好 你好 你好 你好
# """
# messages = [{"role": "system", "content": system_message}]
# messages.append({"role": "user", "content": f"从下面的文本中给我提取五个关键词,只输出这五个关键词,以空格分隔{message}"})
# response = client.chat.completions.create(
# model="gpt-3.5-turbo",
# messages=messages,
# max_tokens=100,
# temperature=0.7,
# top_p=0.9,
# )
# keywords = response.choices[0].message.content.split(' ')
# return ','.join(keywords)
# #字符串匹配模块
# def keyword_match(query_keywords_dict, ad_keywords_lists, triggered_keywords, current_turn, window_size,distance_threshold):
# distance = 0
# most_matching_list = None
# index = 0
# # query_keywords = query_keywords.split(',')
# # query_keywords = [keyword for keyword in query_keywords if keyword]
# #匹配模块
# query_keywords= list(query_keywords_dict.keys())
# for i, lst in enumerate(ad_keywords_lists):
# lst = lst.split(',')
# matches = sum(
# any(
# ad_keyword in keyword and
# (
# keyword not in triggered_keywords or
# triggered_keywords.get(keyword) is None or
# current_turn - triggered_keywords.get(keyword, 0) > window_size
# ) * query_keywords_dict.get(keyword, 1) #计数乘以权重
# for keyword in query_keywords
# )
# for ad_keyword in lst
# )
# if matches > distance:
# distance = matches
# most_matching_list = lst
# index = i
# #更新对distance 有贡献的关键词
# if distance >= distance_threshold:
# for keyword in query_keywords:
# if any(
# ad_keyword in keyword for ad_keyword in most_matching_list
# ):
# triggered_keywords[keyword] = current_turn
# return distance, index
# def encode_list_to_avg(keywords_list_list, model, tokenizer, device):
# if torch.cuda.is_available():
# print('Using GPU')
# print(device)
# else:
# print('Using CPU')
# print(device)
# avg_embeddings = []
# for keywords in tqdm(keywords_list_list):
# keywords_lst=[]
# # keywords.split(',')
# for keyword in keywords:
# inputs = tokenizer(keyword, return_tensors='pt', padding=True, truncation=True, max_length=512)
# inputs.to(device)
# with torch.no_grad():
# outputs = model(**inputs)
# embeddings = outputs.last_hidden_state.mean(dim=1)
# keywords_lst.append(embeddings)
# avg_embedding = sum(keywords_lst) / len(keywords_lst)
# avg_embeddings.append(avg_embedding)
# return avg_embeddings
# def encode_to_avg(keywords_dict, model, tokenizer, device):
# if torch.cuda.is_available():
# print('Using GPU')
# print(device)
# else:
# print('Using CPU')
# print(device)
# keyword_embeddings=[]
# for keyword, weight in keywords_dict.items():
# inputs = tokenizer(keyword, return_tensors='pt', padding=True, truncation=True, max_length=512)
# inputs.to(device)
# with torch.no_grad():
# outputs = model(**inputs)
# embedding = outputs.last_hidden_state.mean(dim=1)
# keyword_embedding=embedding * weight
# keyword_embeddings.append(keyword_embedding * weight)
# avg_embedding = sum(keyword_embeddings) / sum(keywords_dict.values())
# return avg_embedding.tolist()
# def fetch_response_from_db(query_keywords_dict,class_name):
# start_time = time.time()
# avg_vec=np.array(encode_to_avg(query_keywords_dict, model, tokenizer, device))
# end_time = time.time()
# print(f"Time taken to encode to avg: {end_time - start_time}")
# nearVector = {
# 'vector': avg_vec
# }
# start_time = time.time()
# response = (
# db_client.query
# .get(class_name, ['keywords', 'summary'])
# .with_near_vector(nearVector)
# .with_limit(1)
# .with_additional(['distance'])
# .do()
# )
# end_time = time.time()
# print(f"Time taken to search in DB: {end_time - start_time}")
# print(response)
# class_name=class_name[0].upper()+class_name[1:]
# if class_name in response['data']['Get']:
# results = response['data']['Get'][class_name]
# print(results[0]['keywords'])
# return results[0]['_additional']['distance'],results[0]['summary'], results[0]['keywords']
# else:
# print(f"Class name {class_name} not found in response")
# return None
# def wrapper(message, history, max_tokens, temperature, top_p, window_size, distance_threshold, weight_keywords_users, weight_keywords_triggered, api_key):
# initialize_clients(api_key)
# return respond(message, history, max_tokens, temperature, top_p, window_size, distance_threshold, weight_keywords_users, weight_keywords_triggered)
# #触发词及触发回合字典
# triggered_keywords = {}
# def respond(
# message,
# history: list[tuple[str, str]],
# max_tokens,
# temperature,
# top_p,
# window_size,
# distance_threshold,
# weight_keywords_users,
# weight_keywords_triggered,
# ):
# system_message_with_ad = """
# # 角色
# 你是一个热情的聊天机器人
# # 指令
# 你的目标是以一种微妙的方式将给定的广告内容嵌入对话中。插入广告时应尽量自然,避免突兀。优先正常回答用户问题,然后逐步以推荐方式引入广告内容。
# 注意要在商品的描述前面加上是来自哪个品牌的广告。
# 注意在推荐中不要脑补用户的身份,只是进行简单推荐。
# 注意要热情但是语气只要适度热情
# # 输入格式
# 用户查询后跟随广告品牌,用<sep>分隔,广告品牌后跟随广告描述,再用<sep>分隔。
# 例如:我想买一条阔腿裤 <sep> 腾讯 <sep> 宽松的阔腿裤这两年真的吸粉不少,明星时尚达人的心头爱。毕竟好穿时尚,谁都能穿出腿长2米的效果宽松的裤腿,当然是遮肉小能手啊。上身随性自然不拘束,面料亲肤舒适贴身体验感棒棒哒。系带部分增加设计看点,还让单品的设计感更强。腿部线条若隐若现的,性感撩人。颜色敲温柔的,与裤子本身所呈现的风格有点反差萌。
# 注意: 当没有<sep>时,正常回复用户,不插入广告。
# # 输出格式
# 始终使用中文,只输出聊天内容,不输出任何自我分析的信息
# """
# system_message_without_ad = """
# 你是一个热情的聊天机器人
# """
# print(f"triggered_keywords{triggered_keywords}")
# # 更新当前轮次
# current_turn = len(history) + 1
# print(f"\ncurrent_turn: {current_turn}\n")
# # 检查历史记录的长度
# if len(history) >= window_size:
# combined_message_user = " ".join([h[0] for h in history[-window_size:] if h[0]] + [message])
# combined_message_assistant=" ".join(h[1] for h in history[-window_size:] if h[1])
# else:
# combined_message_user = message
# combined_message_assistant = ""
# start_time = time.time()
# key_words_users=get_keywords(combined_message_user).split(',')
# key_words_assistant=get_keywords(combined_message_assistant).split(',')
# end_time = time.time()
# print(f"Time taken to get keywords: {end_time - start_time}")
# print(f"Initial keywords_users: {key_words_users}")
# print(f"Initial keywords_assistant: {key_words_assistant}")
# keywords_dict = {}
# added_keywords = set()
# for keywords in key_words_users:
# if keywords not in added_keywords:
# if keywords in keywords_dict:
# keywords_dict[keywords] += weight_keywords_users
# else:
# keywords_dict[keywords] = weight_keywords_users
# added_keywords.add(keywords)
# for keywords in key_words_assistant:
# if keywords not in added_keywords:
# if keywords in keywords_dict:
# keywords_dict[keywords] += 1
# else:
# keywords_dict[keywords] = 1
# added_keywords.add(keywords)
# #窗口内触发过的关键词权重下调为0.5
# for keyword in list(keywords_dict.keys()):
# if keyword in triggered_keywords:
# if current_turn - triggered_keywords[keyword] < window_size:
# keywords_dict[keyword] = weight_keywords_triggered
# query_keywords = list(keywords_dict.keys())
# print(keywords_dict)
# start_time = time.time()
# distance,top_keywords_list,top_summary = fetch_response_from_db(keywords_dict,class_name)
# end_time = time.time()
# print(f"Time taken to fetch response from db: {end_time - start_time}")
# print(f"distance: {distance}")
# if distance<distance_threshold:
# ad =top_summary
# messages = [{"role": "system", "content": system_message_with_ad}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# brands = ['腾讯', '百度', '京东', '华为', '小米', '苹果', '微软', '谷歌', '亚马逊']
# brand = random.choice(brands)
# messages.append({"role": "user", "content": f"{message} <sep>{brand}的 <sep> {ad}"})
# #更新触发词
# for keyword in query_keywords:
# if any(
# ad_keyword in keyword for ad_keyword in top_keywords_list
# ):
# triggered_keywords[keyword] = current_turn
# else:
# messages = [{"role": "system", "content": system_message_without_ad}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# start_time = time.time()
# response = client.chat.completions.create(
# model="gpt-3.5-turbo",
# messages=messages,
# max_tokens=max_tokens,
# temperature=temperature,
# top_p=top_p,
# )
# end_time = time.time()
# print(f"Time taken to get response from GPT: {end_time - start_time}")
# return response.choices[0].message.content
# # def chat_interface(message, history, max_tokens, temperature, top_p, window_size, distance_threshold):
# # global triggered_keywords
# # response, triggered_keywords = respond(
# # message,
# # history,
# # max_tokens,
# # temperature,
# # top_p,
# # window_size,
# # distance_threshold,
# # triggered_keywords
# # )
# # return response, history + [(message, response)]
# demo = gr.ChatInterface(
# wrapper,
# additional_inputs=[
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Window size"),
# gr.Slider(minimum=0.01, maximum=0.20, value=0.08, step=0.01, label="Distance threshold"),
# gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Weight of keywords from users"),
# gr.Slider(minimum=0, maximum=2, value=0.5, step=0.5, label="Weight of triggered keywords"),
# gr.Textbox(label="api_key"),
# ],
# )
# if __name__ == "__main__":
# demo.launch(share=True)
# import gradio as gr
# from huggingface_hub import InferenceClient
# import json
# import random
# import re
# from load_data import load_data
# from openai import OpenAI
# from transformers import AutoTokenizer, AutoModel
# import weaviate
# import os
# import subprocess
# import torch
# from tqdm import tqdm
# import numpy as np
# # 设置 Matplotlib 和 Hugging Face Transformers 的缓存目录
# os.environ['MPLCONFIGDIR'] = '/tmp/matplotlib'
# os.environ['TRANSFORMERS_CACHE'] = '/tmp/huggingface_cache'
# os.makedirs(os.environ['MPLCONFIGDIR'], exist_ok=True)
# os.makedirs(os.environ['TRANSFORMERS_CACHE'], exist_ok=True)
# auth_config = weaviate.AuthApiKey(api_key="Y7c8DRmcxZ4nP5IJLwkznIsK84l6EdwfXwcH")
# URL = "https://39nlafviqvard82k6y8btq.c0.asia-southeast1.gcp.weaviate.cloud"
# # Connect to a WCS instance
# db_client = weaviate.Client(
# url=URL,
# auth_client_secret=auth_config
# )
# class_name = "ad_DB02"
# device = torch.device(device='cuda' if torch.cuda.is_available() else 'cpu')
# tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
# model = AutoModel.from_pretrained("bert-base-chinese")
# global_api_key = None
# client = None
# def initialize_clients(api_key):
# global client
# client = OpenAI(api_key=api_key)
# def get_keywords(message):
# system_message = """
# # 角色
# 你是一个关键词提取机器人
# # 指令
# 你的目标是从用户的输入中提取关键词,这些关键词应该尽可能是购买意图相关的。关键词中应该尽可能注意那些名词和形容词
# # 输出格式
# 你应该直接输出关键词,关键词之间用空格分隔。例如:苹果 电脑 裤子 蓝色 裙
# # 注意:如果输入文本过短可以重复输出关键词,例如对输入“你好”可以输出:你好 你好 你好 你好 你好
# """
# messages = [{"role": "system", "content": system_message}]
# messages.append({"role": "user", "content": f"从下面的文本中给我提取五个关键词,只输出这五个关键词,以空格分隔{message}"})
# response = client.chat.completions.create(
# model="gpt-3.5-turbo",
# messages=messages,
# max_tokens=100,
# temperature=0.7,
# top_p=0.9,
# )
# keywords = response.choices[0].message.content.split(' ')
# return ','.join(keywords)
# def fetch_response_from_db(query_keywords_dict, class_name):
# avg_vec = np.array(encode_to_avg(query_keywords_dict, model, tokenizer, device))
# nearVector = {'vector': avg_vec}
# response = (
# db_client.query
# .get(class_name, ['keywords', 'summary'])
# .with_near_vector(nearVector)
# .with_limit(1)
# .with_additional(['distance'])
# .do()
# )
# class_name = class_name[0].upper() + class_name[1:]
# if class_name in response['data']['Get']:
# results = response['data']['Get'][class_name]
# return results[0]['_additional']['distance'], results[0]['summary'], results[0]['keywords']
# else:
# print(f"Class name {class_name} not found in response")
# return None
# def encode_to_avg(keywords_dict, model, tokenizer, device):
# if torch.cuda.is_available():
# print('Using GPU')
# print(device)
# else:
# print('Using CPU')
# print(device)
# keyword_embeddings = []
# for keyword, weight in keywords_dict.items():
# inputs = tokenizer(keyword, return_tensors='pt', padding=True, truncation=True, max_length=512)
# inputs.to(device)
# with torch.no_grad():
# outputs = model(**inputs)
# embedding = outputs.last_hidden_state.mean(dim=1)
# keyword_embedding = embedding * weight
# keyword_embeddings.append(keyword_embedding)
# avg_embedding = sum(keyword_embeddings) / sum(keywords_dict.values())
# return avg_embedding.tolist()
# def wrapper(message, history, max_tokens, temperature, top_p, window_size, distance_threshold, weight_keywords_users, weight_keywords_triggered, api_key, state):
# initialize_clients(api_key)
# return respond(message, history, max_tokens, temperature, top_p, window_size, distance_threshold, weight_keywords_users, weight_keywords_triggered, state)
# def respond(
# message,
# history,
# max_tokens,
# temperature,
# top_p,
# window_size,
# distance_threshold,
# weight_keywords_users,
# weight_keywords_triggered,
# state
# ):
# triggered_keywords = state.get('triggered_keywords', {})
# current_turn = len(history) + 1
# if len(history) >= window_size:
# combined_message_user = " ".join([h[0] for h in history[-window_size:] if h[0]] + [message])
# combined_message_assistant = " ".join(h[1] for h in history[-window_size:] if h[1])
# else:
# combined_message_user = message
# combined_message_assistant = ""
# key_words_users = get_keywords(combined_message_user).split(',')
# key_words_assistant = get_keywords(combined_message_assistant).split(',')
# keywords_dict = {}
# for keyword in key_words_users:
# if keyword in keywords_dict:
# keywords_dict[keyword] += weight_keywords_users
# else:
# keywords_dict[keyword] = weight_keywords_users
# for keyword in key_words_assistant:
# if keyword in keywords_dict:
# keywords_dict[keyword] += 1
# else:
# keywords_dict[keyword] = 1
# for keyword in list(keywords_dict.keys()):
# if keyword in triggered_keywords:
# if current_turn - triggered_keywords[keyword] < window_size:
# keywords_dict[keyword] = weight_keywords_triggered
# query_keywords = list(keywords_dict.keys())
# distance, top_keywords_list, top_summary = fetch_response_from_db(keywords_dict, class_name)
# if distance < distance_threshold:
# ad = top_summary
# messages = [{"role": "system", "content": system_message_with_ad}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# brands = ['腾讯', '百度', '京东', '华为', '小米', '苹果', '微软', '谷歌', '亚马逊']
# brand = random.choice(brands)
# messages.append({"role": "user", "content": f"{message} <sep>{brand}的 <sep> {ad}"})
# for keyword in query_keywords:
# if any(ad_keyword in keyword for ad_keyword in top_keywords_list):
# triggered_keywords[keyword] = current_turn
# else:
# messages = [{"role": "system", "content": system_message_without_ad}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = client.chat.completions.create(
# model="gpt-3.5-turbo",
# messages=messages,
# max_tokens=max_tokens,
# temperature=temperature,
# top_p=top_p,
# )
# state['triggered_keywords'] = triggered_keywords
# return response.choices[0].message.content, state
# demo = gr.ChatInterface(
# wrapper,
# additional_inputs=[
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
# gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Window size"),
# gr.Slider(minimum=0.01, maximum=0.20, value=0.08, step=0.01, label="Distance threshold"),
# gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Weight of keywords from users"),
# gr.Slider(minimum=0, maximum=2, value=0.5, step=0.5, label="Weight of triggered keywords"),
# gr.Textbox(label="api_key"),
# gr.State(value="state")
# ],
# )
# if __name__ == "__main__":
# demo.launch(share=True)
|