File size: 12,119 Bytes
d1afbc8 1b98b73 d1afbc8 1b98b73 d1afbc8 7fe8be5 d41a575 7fe8be5 d41a575 7fe8be5 d41a575 7fe8be5 d41a575 7fe8be5 d41a575 d1afbc8 d41a575 d1afbc8 d41a575 d1afbc8 6b456c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
# utils.py
from __future__ import annotations
import io, base64, math
from math import gcd
import numpy as np
import soundfile as sf
from scipy.signal import resample_poly
# Magenta RT audio types
from magenta_rt import audio as au
# Optional loudness
try:
import pyloudnorm as pyln
_HAS_LOUDNORM = True
except Exception:
_HAS_LOUDNORM = False
# ---------- Loudness ----------
def _measure_lufs(wav: au.Waveform) -> float:
meter = pyln.Meter(wav.sample_rate) # BS.1770-4
return float(meter.integrated_loudness(wav.samples))
def _rms(x: np.ndarray) -> float:
if x.size == 0: return 0.0
return float(np.sqrt(np.mean(x**2)))
def match_loudness_to_reference(
ref: au.Waveform,
target: au.Waveform,
method: str = "auto", # "auto"|"lufs"|"rms"|"none"
headroom_db: float = 1.0
) -> tuple[au.Waveform, dict]:
stats = {"method": method, "applied_gain_db": 0.0}
if method == "none":
return target, stats
if method == "auto":
method = "lufs" if _HAS_LOUDNORM else "rms"
if method == "lufs" and _HAS_LOUDNORM:
L_ref = _measure_lufs(ref)
L_tgt = _measure_lufs(target)
delta_db = L_ref - L_tgt
gain = 10.0 ** (delta_db / 20.0)
y = target.samples.astype(np.float32) * gain
stats.update({"ref_lufs": L_ref, "tgt_lufs_before": L_tgt, "applied_gain_db": delta_db})
else:
ra = _rms(ref.samples)
rb = _rms(target.samples)
if rb <= 1e-12:
return target, stats
gain = ra / rb
y = target.samples.astype(np.float32) * gain
stats.update({"ref_rms": ra, "tgt_rms_before": rb, "applied_gain_db": 20*np.log10(max(gain,1e-12))})
# simple peak “limiter” to keep headroom
limit = 10 ** (-headroom_db / 20.0) # e.g., -1 dBFS
peak = float(np.max(np.abs(y))) if y.size else 0.0
if peak > limit:
y *= (limit / peak)
stats["post_peak_limited"] = True
else:
stats["post_peak_limited"] = False
target.samples = y.astype(np.float32)
return target, stats
# ---------- Stitch / fades / trims ----------
def stitch_generated(chunks, sr: int, xfade_s: float, drop_first_pre_roll: bool = True):
if not chunks:
raise ValueError("no chunks")
xfade_n = int(round(xfade_s * sr))
if xfade_n <= 0:
return au.Waveform(np.concatenate([c.samples for c in chunks], axis=0), sr)
t = np.linspace(0, np.pi/2, xfade_n, endpoint=False, dtype=np.float32)
eq_in, eq_out = np.sin(t)[:, None], np.cos(t)[:, None]
first = chunks[0].samples
if first.shape[0] < xfade_n:
raise ValueError("chunk shorter than crossfade prefix")
# 🔧 key change:
out = first[xfade_n:].copy() if drop_first_pre_roll else first.copy()
for i in range(1, len(chunks)):
cur = chunks[i].samples
if cur.shape[0] < xfade_n:
continue
head, tail = cur[:xfade_n], cur[xfade_n:]
mixed = out[-xfade_n:] * eq_out + head * eq_in
out = np.concatenate([out[:-xfade_n], mixed, tail], axis=0)
return au.Waveform(out, sr)
def hard_trim_seconds(wav: au.Waveform, seconds: float) -> au.Waveform:
n = int(round(seconds * wav.sample_rate))
return au.Waveform(wav.samples[:n], wav.sample_rate)
def apply_micro_fades(wav: au.Waveform, ms: int = 5) -> None:
n = int(wav.sample_rate * ms / 1000.0)
if n > 0 and wav.samples.shape[0] > 2*n:
env = np.linspace(0.0, 1.0, n, dtype=np.float32)[:, None]
wav.samples[:n] *= env
wav.samples[-n:] *= env[::-1]
# ---------- Token context helpers ----------
def make_bar_aligned_context(tokens, bpm, fps=25.0, ctx_frames=250, beats_per_bar=4):
"""
Return a ctx_frames-long slice of `tokens` whose **end** lands on the nearest
whole-bar boundary in codec-frame space, even when frames_per_bar is fractional.
tokens: np.ndarray of shape (T, D) or (T,) where T = codec frames
bpm: float
fps: float (codec frames per second; keep this as float)
ctx_frames: int (length of context window in codec frames)
beats_per_bar: int
"""
if tokens is None:
raise ValueError("tokens is None")
tokens = np.asarray(tokens)
if tokens.ndim == 1:
tokens = tokens[:, None] # promote to (T, 1) for uniform tiling
T = tokens.shape[0]
if T == 0:
return tokens
fps = float(fps)
frames_per_bar_f = (beats_per_bar * 60.0 / float(bpm)) * fps # float frames per bar
# Tile a little more than we need so we can always snap the END to a bar boundary
reps = int(np.ceil((ctx_frames + T) / float(T))) + 1
tiled = np.tile(tokens, (reps, 1))
total = tiled.shape[0]
# How many whole bars fit?
k_bars = int(np.floor(total / frames_per_bar_f))
if k_bars <= 0:
# Fallback: just take the last ctx_frames
window = tiled[-ctx_frames:]
return window
# Snap END index to the nearest integer frame at a whole-bar boundary
end_idx = int(round(k_bars * frames_per_bar_f))
end_idx = min(max(end_idx, ctx_frames), total)
start_idx = end_idx - ctx_frames
if start_idx < 0:
start_idx = 0
end_idx = ctx_frames
window = tiled[start_idx:end_idx]
# Guard against rare off-by-one due to rounding
if window.shape[0] < ctx_frames:
pad = np.tile(tokens, (int(np.ceil((ctx_frames - window.shape[0]) / T)), 1))
window = np.vstack([window, pad])[:ctx_frames]
elif window.shape[0] > ctx_frames:
window = window[-ctx_frames:]
return window
def take_bar_aligned_tail(
wav: au.Waveform,
bpm: float,
beats_per_bar: int,
ctx_seconds: float,
max_bars=None
) -> au.Waveform:
"""
Take a tail whose length is an integer number of bars, with the END aligned
to a bar boundary. Uses ceil for bars_needed so we never under-fill the context.
"""
import math
# seconds per bar
spb = (60.0 / float(bpm)) * float(beats_per_bar)
# Pick enough whole bars to cover ctx_seconds (avoid underfilling on round-down).
# The small epsilon avoids an extra bar due to FP jitter when ctx_seconds ~= k * spb.
eps = 1e-9
bars_needed = max(1, int(math.ceil((float(ctx_seconds) - eps) / spb)))
if max_bars is not None:
bars_needed = min(bars_needed, int(max_bars))
# Convert bars -> samples (do rounding once at the end for stability)
samples_per_bar_f = spb * float(wav.sample_rate)
n = int(round(bars_needed * samples_per_bar_f))
total = int(wav.samples.shape[0])
if n >= total:
# Not enough audio to take that many bars—return as-is (current behavior).
return wav
start = total - n
return au.Waveform(wav.samples[start:], wav.sample_rate)
# ---------- SR normalize + snap ----------
def resample_and_snap(x: np.ndarray, cur_sr: int, target_sr: int, seconds: float) -> np.ndarray:
"""
x: np.ndarray shape (S, C), float32
Returns: exact-length array (round(seconds*target_sr), C)
"""
if x.ndim == 1:
x = x[:, None]
if cur_sr != target_sr:
g = gcd(cur_sr, target_sr)
up, down = target_sr // g, cur_sr // g
x = resample_poly(x, up, down, axis=0)
expected_len = int(round(seconds * target_sr))
if x.shape[0] < expected_len:
pad = np.zeros((expected_len - x.shape[0], x.shape[1]), dtype=x.dtype)
x = np.vstack([x, pad])
elif x.shape[0] > expected_len:
x = x[:expected_len, :]
return x.astype(np.float32, copy=False)
# ---------- WAV encode ----------
def wav_bytes_base64(x: np.ndarray, sr: int) -> tuple[str, int, int]:
"""
x: np.ndarray shape (S, C)
returns: (base64_wav, total_samples, channels)
"""
buf = io.BytesIO()
sf.write(buf, x, sr, subtype="FLOAT", format="WAV")
buf.seek(0)
b64 = base64.b64encode(buf.read()).decode("utf-8")
return b64, int(x.shape[0]), int(x.shape[1])
def _ratio(out_sr: int, in_sr: int) -> tuple[int, int]:
g = gcd(int(out_sr), int(in_sr))
return int(out_sr) // g, int(in_sr) // g
class StreamingResampler:
"""
Stateful streaming resampler.
Prefers soxr (best), then libsamplerate; final fallback is block resample_poly.
Always pass float32 arrays shaped (S, C).
"""
def __init__(self, in_sr: int, out_sr: int, channels: int = 2, quality: str = "VHQ"):
self.in_sr = int(in_sr)
self.out_sr = int(out_sr)
self.channels = int(channels)
self.quality = quality
self._backend = None
# Try soxr first
try:
import soxr # pip install soxr
self._backend = "soxr"
# dtype float32 keeps things consistent with the rest of your code
self._rs = soxr.Resampler(
self.in_sr,
self.out_sr,
channels=self.channels,
dtype="float32",
quality=self.quality, # "Q", "HQ", "VHQ"
)
except Exception:
# Try libsamplerate
try:
import samplerate # pip install samplerate
self._backend = "samplerate"
# sinc_best == highest quality; you can choose 'sinc_medium' for speed
self._rs = samplerate.Resampler(converter_type="sinc_best", channels=self.channels)
except Exception:
# Last resort: block resample (not truly streaming)
from scipy.signal import resample_poly
self._backend = "scipy"
self._resample_poly = resample_poly
self._L, self._M = _ratio(self.out_sr, self.in_sr)
# Keep a tiny tail to help transitions (still not perfect vs true streaming)
self._hist = np.zeros((0, self.channels), dtype=np.float32)
def process(self, x: np.ndarray, final: bool = False) -> np.ndarray:
"""Feed a chunk (S, C) and get resampled chunk (S', C). Keep calling in order."""
if x.size == 0 and not final:
# nothing to do
return np.zeros((0, self.channels), dtype=np.float32)
if self._backend == "soxr":
return self._rs.process(x, final=final)
elif self._backend == "samplerate":
import samplerate
ratio = float(self.out_sr) / float(self.in_sr)
# end_of_input=True flushes tail on the last call
y = self._rs.process(x, ratio, end_of_input=final)
# libsamplerate returns (S', C)
return y.astype(np.float32, copy=False)
# --- scipy fallback (block, not truly streaming) ---
# We concatenate a short history to reduce block edge artifacts
x_ext = x if self._hist.size == 0 else np.vstack([self._hist, x])
y = self._resample_poly(x_ext, up=self._L, down=self._M, axis=0).astype(np.float32, copy=False)
# Heuristic: drop the portion corresponding roughly to the history to avoid duplicate content
# (Not perfect, but helps a lot when chunks are reasonably sized.)
drop = int(round(self._hist.shape[0] * self.out_sr / self.in_sr))
y = y[drop:] if drop < y.shape[0] else np.zeros((0, self.channels), dtype=np.float32)
# Keep a small input tail for the next call (say ~ 4 ms at in_sr)
tail_samples = max(int(0.004 * self.in_sr), 1)
self._hist = x[-tail_samples:] if x.shape[0] >= tail_samples else x.copy()
if final:
self._hist = np.zeros((0, self.channels), dtype=np.float32)
return y
def flush(self) -> np.ndarray:
"""Drain converter tail (call at stop)."""
if self._backend == "soxr":
return self._rs.process(np.zeros((0, self.channels), dtype=np.float32), final=True)
elif self._backend == "samplerate":
ratio = float(self.out_sr) / float(self.in_sr)
return self._rs.process(np.zeros((0, self.channels), dtype=np.float32), ratio, end_of_input=True)
else:
# nothing meaningful to flush in scipy fallback
return np.zeros((0, self.channels), dtype=np.float32)
|