File size: 10,358 Bytes
842a99f 78cac08 842a99f 78cac08 842a99f 78cac08 842a99f 78cac08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
"""
One-shot music generation functions for MagentaRT.
This module contains the core generation functions extracted from the main app
that can be used independently for single-shot music generation tasks.
"""
import math
import numpy as np
from magenta_rt import audio as au
from utils import (
match_loudness_to_reference,
stitch_generated,
hard_trim_seconds,
apply_micro_fades,
make_bar_aligned_context,
take_bar_aligned_tail
)
def generate_loop_continuation_with_mrt(
mrt,
input_wav_path: str,
bpm: float,
extra_styles=None,
style_weights=None,
bars: int = 8,
beats_per_bar: int = 4,
loop_weight: float = 1.0,
loudness_mode: str = "auto",
loudness_headroom_db: float = 1.0,
intro_bars_to_drop: int = 0,
):
"""
Generate a continuation of an input loop using MagentaRT.
Args:
mrt: MagentaRT instance
input_wav_path: Path to input audio file
bpm: Beats per minute
extra_styles: List of additional text style prompts (optional)
style_weights: List of weights for style prompts (optional)
bars: Number of bars to generate
beats_per_bar: Beats per bar (typically 4)
loop_weight: Weight for the input loop's style embedding
loudness_mode: Loudness matching method ("auto", "lufs", "rms", "none")
loudness_headroom_db: Headroom in dB for peak limiting
intro_bars_to_drop: Number of intro bars to generate then drop
Returns:
Tuple of (au.Waveform output, dict loudness_stats)
"""
# Load & prep (unchanged)
loop = au.Waveform.from_file(input_wav_path).resample(mrt.sample_rate).as_stereo()
# Use tail for context (your recent change)
codec_fps = float(mrt.codec.frame_rate)
ctx_seconds = float(mrt.config.context_length_frames) / codec_fps
loop_for_context = take_bar_aligned_tail(loop, bpm, beats_per_bar, ctx_seconds)
tokens_full = mrt.codec.encode(loop_for_context).astype(np.int32)
tokens = tokens_full[:, :mrt.config.decoder_codec_rvq_depth]
# Bar-aligned token window (unchanged)
context_tokens = make_bar_aligned_context(
tokens, bpm=bpm, fps=float(mrt.codec.frame_rate),
ctx_frames=mrt.config.context_length_frames, beats_per_bar=beats_per_bar
)
state = mrt.init_state()
state.context_tokens = context_tokens
# STYLE embed (optional: switch to loop_for_context if you want stronger "recent" bias)
loop_embed = mrt.embed_style(loop_for_context)
embeds, weights = [loop_embed], [float(loop_weight)]
if extra_styles:
for i, s in enumerate(extra_styles):
if s.strip():
embeds.append(mrt.embed_style(s.strip()))
w = style_weights[i] if (style_weights and i < len(style_weights)) else 1.0
weights.append(float(w))
wsum = float(sum(weights)) or 1.0
weights = [w / wsum for w in weights]
combined_style = np.sum([w * e for w, e in zip(weights, embeds)], axis=0).astype(loop_embed.dtype)
# --- Length math ---
seconds_per_bar = beats_per_bar * (60.0 / bpm)
total_secs = bars * seconds_per_bar
drop_bars = max(0, int(intro_bars_to_drop))
drop_secs = min(drop_bars, bars) * seconds_per_bar # clamp to <= bars
gen_total_secs = total_secs + drop_secs # generate extra
# Chunk scheduling to cover gen_total_secs
chunk_secs = mrt.config.chunk_length_frames * mrt.config.frame_length_samples / mrt.sample_rate # ~2.0
steps = int(math.ceil(gen_total_secs / chunk_secs)) + 1 # pad then trim
# Generate
chunks = []
for _ in range(steps):
wav, state = mrt.generate_chunk(state=state, style=combined_style)
chunks.append(wav)
# Stitch continuous audio
stitched = stitch_generated(chunks, mrt.sample_rate, mrt.config.crossfade_length).as_stereo()
# Trim to generated length (bars + dropped bars)
stitched = hard_trim_seconds(stitched, gen_total_secs)
# 👉 Drop the intro bars
if drop_secs > 0:
n_drop = int(round(drop_secs * stitched.sample_rate))
stitched = au.Waveform(stitched.samples[n_drop:], stitched.sample_rate)
# Final exact-length trim to requested bars
out = hard_trim_seconds(stitched, total_secs)
# (optional) keep micro fades
apply_micro_fades(out, 5)
# Bar-wise loudness match so bar 1 sits right even if the model ramps up
out, loud_stats = apply_barwise_loudness_match(
out,
ref_loop=loop, # same source the jam path tiles per chunk
bpm=bpm,
beats_per_bar=beats_per_bar,
method=loudness_mode,
headroom_db=loudness_headroom_db,
)
# Optionally finish with a light peak cap to ~-1 dBFS (no re-scaling)
out = out.peak_normalize(0.95)
def generate_style_only_with_mrt(
mrt,
bpm: float,
bars: int = 8,
beats_per_bar: int = 4,
styles: str = "warmup",
style_weights: str = "",
intro_bars_to_drop: int = 0,
):
"""
Style-only, bar-aligned generation using a silent context (no input audio).
Returns: (au.Waveform out, dict loud_stats_or_None)
"""
# ---- Build a 10s silent context, tokenized for the model ----
codec_fps = float(mrt.codec.frame_rate)
ctx_seconds = float(mrt.config.context_length_frames) / codec_fps
sr = int(mrt.sample_rate)
silent = au.Waveform(np.zeros((int(round(ctx_seconds * sr)), 2), np.float32), sr)
tokens_full = mrt.codec.encode(silent).astype(np.int32)
tokens = tokens_full[:, :mrt.config.decoder_codec_rvq_depth]
state = mrt.init_state()
state.context_tokens = tokens
# ---- Style vector (text prompts only, normalized weights) ----
prompts = [s.strip() for s in (styles.split(",") if styles else []) if s.strip()]
if not prompts:
prompts = ["warmup"]
sw = [float(x) for x in style_weights.split(",")] if style_weights else []
embeds, weights = [], []
for i, p in enumerate(prompts):
embeds.append(mrt.embed_style(p))
weights.append(sw[i] if i < len(sw) else 1.0)
wsum = float(sum(weights)) or 1.0
weights = [w / wsum for w in weights]
style_vec = np.sum([w * e for w, e in zip(weights, embeds)], axis=0).astype(np.float32)
# ---- Target length math ----
seconds_per_bar = beats_per_bar * (60.0 / bpm)
total_secs = bars * seconds_per_bar
drop_bars = max(0, int(intro_bars_to_drop))
drop_secs = min(drop_bars, bars) * seconds_per_bar
gen_total_secs = total_secs + drop_secs
# ~2.0s chunk length from model config
chunk_secs = (mrt.config.chunk_length_frames * mrt.config.frame_length_samples) / float(mrt.sample_rate)
# Generate enough chunks to cover total, plus a pad chunk for crossfade headroom
steps = int(math.ceil(gen_total_secs / chunk_secs)) + 1
chunks = []
for _ in range(steps):
wav, state = mrt.generate_chunk(state=state, style=style_vec)
chunks.append(wav)
# Stitch & trim to exact musical length
stitched = stitch_generated(chunks, mrt.sample_rate, mrt.config.crossfade_length).as_stereo()
stitched = hard_trim_seconds(stitched, gen_total_secs)
if drop_secs > 0:
n_drop = int(round(drop_secs * stitched.sample_rate))
stitched = au.Waveform(stitched.samples[n_drop:], stitched.sample_rate)
out = hard_trim_seconds(stitched, total_secs)
out = out.peak_normalize(0.95)
apply_micro_fades(out, 5)
return out, None # loudness stats not applicable (no reference)
# loudness matching helper for /generate:
def apply_barwise_loudness_match(
out: au.Waveform,
ref_loop: au.Waveform,
*,
bpm: float,
beats_per_bar: int,
method: str = "auto",
headroom_db: float = 1.0,
smooth_ms: int = 50, # small ramp between bars
) -> tuple[au.Waveform, dict]:
"""
Bar-locked loudness matching. Tiles ref_loop to cover out, then
per-bar calls match_loudness_to_reference() and applies gains with
a short cross-ramp between bars for smoothness.
"""
sr = int(out.sample_rate)
spb = (60.0 / float(bpm)) * int(beats_per_bar)
bar_len = int(round(spb * sr))
y = out.samples.astype(np.float32, copy=False)
if y.ndim == 1: y = y[:, None]
if ref_loop.sample_rate != sr:
ref = ref_loop.resample(sr).as_stereo().samples.astype(np.float32, copy=False)
else:
ref = ref_loop.as_stereo().samples.astype(np.float32, copy=False)
if ref.ndim == 1: ref = ref[:, None]
if ref.shape[1] == 1: ref = np.repeat(ref, 2, axis=1)
# tile reference to length of out
need = y.shape[0]
reps = int(np.ceil(need / float(ref.shape[0]))) if ref.shape[0] else 1
ref_tiled = np.tile(ref, (max(1, reps), 1))[:need]
from .utils import match_loudness_to_reference # same module in your tree
gains_db = []
out_adj = y.copy()
n_bars = max(1, int(np.ceil(need / float(bar_len))))
ramp = int(max(0, round(smooth_ms * sr / 1000.0)))
for i in range(n_bars):
s = i * bar_len
e = min(need, s + bar_len)
if e <= s: break
ref_bar = au.Waveform(ref_tiled[s:e], sr)
tgt_bar = au.Waveform(out_adj[s:e], sr)
matched_bar, stats = match_loudness_to_reference(
ref_bar, tgt_bar, method=method, headroom_db=headroom_db
)
# compute linear gain we actually applied
g = matched_bar.samples.astype(np.float32, copy=False)
if tgt_bar.samples.size > 0:
# avoid divide-by-zero; infer average gain over the bar
eps = 1e-12
g_lin = float(np.sqrt((np.mean(g**2) + eps) / (np.mean(tgt_bar.samples**2) + eps)))
else:
g_lin = 1.0
gains_db.append(20.0 * np.log10(max(g_lin, 1e-6)))
# write with a short cross-ramp from previous bar
if i > 0 and ramp > 0:
r0 = max(s, s + ramp - (e - s)) # clamp if last bar shorter
t = np.linspace(0.0, 1.0, r0 - s, dtype=np.float32)[:, None]
out_adj[s:r0] = (1.0 - t) * out_adj[s:r0] + t * g[:r0-s]
out_adj[r0:e] = g[r0-s:e-s]
else:
out_adj[s:e] = g
out.samples = out_adj.astype(np.float32, copy=False)
return out, {"per_bar_gain_db": gains_db} |