File size: 23,157 Bytes
0bcee26
ddff9eb
 
0bcee26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5221213
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
# app/bot.py
from __future__ import annotations

import os
# Set cache directories before importing transformers
os.environ['HF_HOME'] = '/app/.cache'
os.environ['TRANSFORMERS_CACHE'] = '/app/.cache/transformers'
os.environ['SENTENCE_TRANSFORMERS_HOME'] = '/app/.cache/sentence_transformers'
os.environ['TORCH_HOME'] = '/app/.cache/torch'

import logging
import re
import unicodedata
import warnings
from pathlib import Path
from typing import Any, List, Dict, Tuple
import json

import numpy as np
import pandas as pd
import torch
from sentence_transformers import SentenceTransformer, CrossEncoder
from sklearn.metrics.pairwise import cosine_similarity
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import nltk

# Download required NLTK data
try:
    nltk.download('punkt', quiet=True)
    nltk.download('stopwords', quiet=True)
except:
    pass

warnings.filterwarnings("ignore")


class RequirementError(RuntimeError):
    pass


class JupiterFAQBot:
    # ------------------------------------------------------------------ #
    # Free Models Configuration
    # ------------------------------------------------------------------ #
    MODELS = {
        "bi": "sentence-transformers/all-MiniLM-L6-v2",  # Fast semantic search
        "cross": "cross-encoder/ms-marco-MiniLM-L-6-v2",  # Reranking
        "qa": "deepset/roberta-base-squad2",  # Better QA model
        "summarizer": "facebook/bart-large-cnn",  # Better summarization
    }

    # Retrieval parameters
    TOP_K = 15          # More candidates for better coverage
    HIGH_SIM = 0.85     # High confidence threshold
    CROSS_OK = 0.50     # Cross-encoder threshold
    MIN_SIM = 0.40      # Minimum similarity to consider
    
    # Paths
    EMB_CACHE = Path("data/faq_embeddings.npy")
    FAQ_PATH = Path("data/faqs.csv")

    # Response templates for better UX
    CONFIDENCE_LEVELS = {
    "high": "This information matches your query based on our FAQs:\n\n",
    "medium": "This appears to be relevant to your question:\n\n",
    "low": "This may be related to your query and could be helpful:\n\n",
    "none": (
        "We couldn't find a direct match for your question. "
        "However, we can assist with topics such as:\n"
        "• Account opening and KYC\n"
        "• Payments and UPI\n"
        "• Rewards and cashback\n"
        "• Credit cards and loans\n"
        "• Investments and savings\n\n"
        "Please try rephrasing your question or selecting a topic above."
    )
    }

    # ------------------------------------------------------------------ #
    def __init__(self, csv_path: str = None) -> None:
        logging.basicConfig(format="%(levelname)s | %(message)s", level=logging.INFO)
        
        # Use provided path or default
        self.csv_path = csv_path or str(self.FAQ_PATH)
        
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.pipe_dev = 0 if self.device.type == "cuda" else -1

        self._load_data(self.csv_path)
        self._setup_models()
        self._setup_embeddings()
        
        logging.info("Jupiter FAQ Bot ready ✔")

    # ------------------------ Text Processing ------------------------- #
    @staticmethod
    def _clean(text: str) -> str:
        """Clean and normalize text"""
        if pd.isna(text):
            return ""
        text = str(text)
        text = unicodedata.normalize("NFC", text)
        # Remove extra whitespace but keep sentence structure
        text = re.sub(r'\s+', ' ', text)
        # Keep bullet points and formatting
        text = re.sub(r'•\s*', '\n• ', text)
        return text.strip()

    @staticmethod
    def _preprocess_query(query: str) -> str:
        """Preprocess user query for better matching"""
        # Expand common abbreviations
        abbreviations = {
            'kyc': 'know your customer verification',
            'upi': 'unified payments interface',
            'fd': 'fixed deposit',
            'sip': 'systematic investment plan',
            'neft': 'national electronic funds transfer',
            'rtgs': 'real time gross settlement',
            'imps': 'immediate payment service',
            'emi': 'equated monthly installment',
            'apr': 'annual percentage rate',
            'atm': 'automated teller machine',
            'pin': 'personal identification number',
        }
        
        query_lower = query.lower()
        for abbr, full in abbreviations.items():
            if abbr in query_lower.split():
                query_lower = query_lower.replace(abbr, full)
        
        return query_lower

    # ------------------------ Initialization -------------------------- #
    def _load_data(self, path: str):
        """Load and preprocess FAQ data"""
        if not Path(path).exists():
            raise RequirementError(f"CSV not found: {path}")

        df = pd.read_csv(path)
        
        # Clean all text fields
        df["question"] = df["question"].apply(self._clean)
        df["answer"] = df["answer"].apply(self._clean)
        df["category"] = df["category"].fillna("General")
        
        # Create searchable text combining question and category
        df["searchable"] = df["question"].str.lower() + " " + df["category"].str.lower()
        
        # Remove duplicates
        df = df.drop_duplicates(subset=["question"]).reset_index(drop=True)
        
        self.faq = df
        logging.info(f"Loaded {len(self.faq)} FAQ entries from {len(df['category'].unique())} categories")

    def _setup_models(self):
        """Initialize all models"""
        logging.info("Loading models...")
        
        # Sentence transformer for embeddings
        self.bi = SentenceTransformer(self.MODELS["bi"], device=self.device)
        
        # Cross-encoder for reranking
        self.cross = CrossEncoder(self.MODELS["cross"], device=self.device)
        
        # QA model
        self.qa = pipeline(
            "question-answering",
            model=self.MODELS["qa"],
            device=self.pipe_dev,
            handle_impossible_answer=True
        )
        
        # Summarization model - using BART for better quality
        self.summarizer = pipeline(
            "summarization",
            model=self.MODELS["summarizer"],
            device=self.pipe_dev,
            max_length=150,
            min_length=50
        )
        
        logging.info("All models loaded successfully")

    def _setup_embeddings(self):
        """Create or load embeddings"""
        questions = self.faq["searchable"].tolist()
        
        if self.EMB_CACHE.exists():
            emb = np.load(self.EMB_CACHE)
            if len(emb) != len(questions):
                logging.info("Regenerating embeddings due to data change...")
                emb = self.bi.encode(questions, show_progress_bar=True, convert_to_tensor=False)
                np.save(self.EMB_CACHE, emb)
        else:
            logging.info("Creating embeddings for the first time...")
            emb = self.bi.encode(questions, show_progress_bar=True, convert_to_tensor=False)
            self.EMB_CACHE.parent.mkdir(parents=True, exist_ok=True)
            np.save(self.EMB_CACHE, emb)
        
        self.embeddings = emb

    # ------------------------- Retrieval ------------------------------ #
    def _retrieve_candidates(self, query: str, top_k: int = None) -> List[Dict]:
        """Retrieve top candidates using semantic search"""
        if top_k is None:
            top_k = self.TOP_K
            
        # Preprocess query
        processed_query = self._preprocess_query(query)
        
        # Encode query
        query_emb = self.bi.encode([processed_query])
        
        # Calculate similarities
        similarities = cosine_similarity(query_emb, self.embeddings)[0]
        
        # Get top indices
        top_indices = similarities.argsort()[-top_k:][::-1]
        
        # Filter by minimum similarity
        candidates = []
        for idx in top_indices:
            if similarities[idx] >= self.MIN_SIM:
                candidates.append({
                    "idx": int(idx),
                    "question": self.faq.iloc[idx]["question"],
                    "answer": self.faq.iloc[idx]["answer"],
                    "category": self.faq.iloc[idx]["category"],
                    "similarity": float(similarities[idx])
                })
        
        return candidates

    def _rerank_candidates(self, query: str, candidates: List[Dict]) -> List[Dict]:
        """Rerank candidates using cross-encoder"""
        if not candidates:
            return []
        
        # Prepare pairs for cross-encoder
        pairs = [[query, c["question"]] for c in candidates]
        
        # Get cross-encoder scores
        scores = self.cross.predict(pairs, convert_to_numpy=True)
        
        # Add scores to candidates
        for c, score in zip(candidates, scores):
            c["cross_score"] = float(score)
        
        # Filter and sort by cross-encoder score
        reranked = [c for c in candidates if c["cross_score"] >= self.CROSS_OK]
        reranked.sort(key=lambda x: x["cross_score"], reverse=True)
        
        return reranked

    def _extract_answer(self, query: str, context: str) -> Dict[str, Any]:
        """Extract specific answer using QA model"""
        try:
            result = self.qa(question=query, context=context)
            return {
                "answer": result["answer"],
                "score": result["score"],
                "start": result.get("start", 0),
                "end": result.get("end", len(result["answer"]))
            }
        except Exception as e:
            logging.warning(f"QA extraction failed: {e}")
            return {"answer": context, "score": 0.5}

    def _create_friendly_response(self, answers: List[str], confidence: str = "medium") -> str:
        """Create a user-friendly response from multiple answers"""
        if not answers:
            return self.CONFIDENCE_LEVELS["none"]
        
        # Remove duplicates while preserving order
        unique_answers = []
        seen = set()
        for ans in answers:
            normalized = ans.lower().strip()
            if normalized not in seen:
                seen.add(normalized)
                unique_answers.append(ans)
        
        if len(unique_answers) == 1:
            # Single answer - return as is with confidence prefix
            return self.CONFIDENCE_LEVELS[confidence] + unique_answers[0]
        
        # Multiple answers - need to summarize
        combined_text = " ".join(unique_answers)
        
        # If text is short enough, format it nicely
        if len(combined_text) < 300:
            response = self.CONFIDENCE_LEVELS[confidence]
            for i, answer in enumerate(unique_answers):
                if "•" in answer:
                    # Already has bullets
                    response += answer + "\n\n"
                else:
                    # Add as paragraph
                    response += answer + "\n\n"
            return response.strip()
        
        # Long text - summarize it
        try:
            # Prepare text for summarization
            summary_input = f"Summarize the following information about Jupiter banking services: {combined_text}"
            
            # Generate summary
            summary = self.summarizer(summary_input, max_length=150, min_length=50, do_sample=False)
            summarized_text = summary[0]['summary_text']
            
            # Make it more conversational
            response = self.CONFIDENCE_LEVELS[confidence]
            response += self._make_conversational(summarized_text)
            
            return response
            
        except Exception as e:
            logging.warning(f"Summarization failed: {e}")
            # Fallback to formatted response
            return self._format_multiple_answers(unique_answers, confidence)

    def _make_conversational(self, text: str) -> str:
        """Make response more conversational and friendly"""
        # Add appropriate punctuation if missing
        if text and text[-1] not in '.!?':
            text += '.'
        
        # Replace robotic phrases
        replacements = {
            "The user": "You",
            "the user": "you",
            "It is": "It's",
            "You will": "You'll",
            "You can not": "You can't",
            "Do not": "Don't",
        }
        
        for old, new in replacements.items():
            text = text.replace(old, new)
        
        return text

    def _format_multiple_answers(self, answers: List[str], confidence: str) -> str:
        """Format multiple answers nicely"""
        response = self.CONFIDENCE_LEVELS[confidence]
        
        if len(answers) <= 3:
            # Few answers - show all
            for answer in answers:
                if "•" in answer:
                    response += answer + "\n\n"
                else:
                    response += f"• {answer}\n\n"
        else:
            # Many answers - group by category
            response += "Here are the key points:\n\n"
            for i, answer in enumerate(answers[:5]):  # Limit to 5
                response += f"{i+1}. {answer}\n\n"
        
        return response.strip()

    # ------------------------- Main API ------------------------------- #
    def generate_response(self, query: str) -> str:
        """Generate response for user query"""
        query = self._clean(query)
        
        # Step 1: Retrieve candidates
        candidates = self._retrieve_candidates(query)
        
        if not candidates:
            return self.CONFIDENCE_LEVELS["none"]
        
        # Step 2: Check for high similarity match
        if candidates[0]["similarity"] >= self.HIGH_SIM:
            return self.CONFIDENCE_LEVELS["high"] + candidates[0]["answer"]
        
        # Step 3: Rerank candidates
        reranked = self._rerank_candidates(query, candidates)
        
        if not reranked:
            # Use original candidates with lower confidence
            reranked = candidates[:3]
            confidence = "low"
        else:
            confidence = "high" if reranked[0]["cross_score"] > 0.8 else "medium"
        
        # Step 4: Extract relevant answers
        relevant_answers = []
        
        for candidate in reranked[:5]:  # Top 5 reranked
            # Try QA extraction for more specific answer
            qa_result = self._extract_answer(query, candidate["answer"])
            
            if qa_result["score"] > 0.3:
                # Good QA match
                relevant_answers.append(qa_result["answer"])
            else:
                # Use full answer if QA didn't find specific part
                relevant_answers.append(candidate["answer"])
        
        # Step 5: Create final response
        final_response = self._create_friendly_response(relevant_answers, confidence)
        
        return final_response

    def suggest_related_queries(self, query: str) -> List[str]:
        """Suggest related queries based on similar questions"""
        candidates = self._retrieve_candidates(query, top_k=10)
        
        related = []
        seen = set()
        
        for candidate in candidates:
            if candidate["similarity"] >= 0.5 and candidate["similarity"] < 0.9:
                # Clean question for display
                clean_q = candidate["question"].strip()
                if clean_q.lower() not in seen and clean_q.lower() != query.lower():
                    seen.add(clean_q.lower())
                    related.append(clean_q)
        
        # Return top 5 related queries
        return related[:5]

    def get_categories(self) -> List[str]:
        """Get all available FAQ categories"""
        return sorted(self.faq["category"].unique().tolist())

    def get_faqs_by_category(self, category: str) -> List[Dict[str, str]]:
        """Get all FAQs for a specific category"""
        cat_faqs = self.faq[self.faq["category"].str.lower() == category.lower()]
        
        return [
            {
                "question": row["question"],
                "answer": row["answer"]
            }
            for _, row in cat_faqs.iterrows()
        ]

    def search_faqs(self, keyword: str) -> List[Dict[str, str]]:
        """Simple keyword search in FAQs"""
        keyword_lower = keyword.lower()
        
        matches = []
        for _, row in self.faq.iterrows():
            if (keyword_lower in row["question"].lower() or 
                keyword_lower in row["answer"].lower()):
                matches.append({
                    "question": row["question"],
                    "answer": row["answer"],
                    "category": row["category"]
                })
        
        return matches[:10]  # Limit to 10 results


# Evaluation module
class BotEvaluator:
    """Evaluate bot performance"""
    
    def __init__(self, bot: JupiterFAQBot):
        self.bot = bot
        
    def create_test_queries(self) -> List[Dict[str, str]]:
        """Create test queries based on FAQ categories"""
        test_queries = [
            # Account queries
            {"query": "How do I open an account?", "expected_category": "Account"},
            {"query": "What is Jupiter savings account?", "expected_category": "Account"},
            
            # Payment queries
            {"query": "How to make UPI payment?", "expected_category": "Payments"},
            {"query": "What is the daily transaction limit?", "expected_category": "Payments"},
            
            # Rewards queries
            {"query": "How do I earn cashback?", "expected_category": "Rewards"},
            {"query": "What are Jewels?", "expected_category": "Rewards"},
            
            # Investment queries
            {"query": "Can I invest in mutual funds?", "expected_category": "Investments"},
            {"query": "What is Magic Spends?", "expected_category": "Magic Spends"},
            
            # Loan queries
            {"query": "How to apply for personal loan?", "expected_category": "Jupiter Loans"},
            {"query": "What is the interest rate?", "expected_category": "Jupiter Loans"},
            
            # Card queries
            {"query": "How to get credit card?", "expected_category": "Edge+ Credit Card"},
            {"query": "Is there any annual fee?", "expected_category": "Edge+ Credit Card"},
        ]
        
        return test_queries
    
    def evaluate_retrieval_accuracy(self) -> Dict[str, float]:
        """Evaluate how well the bot retrieves relevant information"""
        test_queries = self.create_test_queries()
        
        correct = 0
        total = len(test_queries)
        
        results = []
        
        for test in test_queries:
            response = self.bot.generate_response(test["query"])
            
            # Check if response mentions expected category content
            is_correct = test["expected_category"].lower() in response.lower()
            
            if is_correct:
                correct += 1
            
            results.append({
                "query": test["query"],
                "expected_category": test["expected_category"],
                "response": response[:200] + "..." if len(response) > 200 else response,
                "correct": is_correct
            })
        
        accuracy = correct / total if total > 0 else 0
        
        return {
            "accuracy": accuracy,
            "correct": correct,
            "total": total,
            "results": results
        }
    
    def evaluate_response_quality(self) -> Dict[str, Any]:
        """Evaluate the quality of responses"""
        test_queries = [
            "What is Jupiter?",
            "How do I earn rewards?",
            "Tell me about credit cards",
            "Can I get a loan?",
            "How to invest money?"
        ]
        
        quality_metrics = []
        
        for query in test_queries:
            response = self.bot.generate_response(query)
            
            # Check quality indicators
            has_greeting = any(phrase in response for phrase in ["Based on", "Here's", "I found"])
            has_structure = "\n" in response or "•" in response
            appropriate_length = 50 < len(response) < 500
            
            quality_score = sum([has_greeting, has_structure, appropriate_length]) / 3
            
            quality_metrics.append({
                "query": query,
                "response_length": len(response),
                "has_greeting": has_greeting,
                "has_structure": has_structure,
                "appropriate_length": appropriate_length,
                "quality_score": quality_score
            })
        
        avg_quality = sum(m["quality_score"] for m in quality_metrics) / len(quality_metrics)
        
        return {
            "average_quality_score": avg_quality,
            "metrics": quality_metrics
        }


# Utility functions for data preparation
def prepare_faq_data(csv_path: str = "data/faqs.csv") -> pd.DataFrame:
    """Prepare and validate FAQ data"""
    df = pd.read_csv(csv_path)
    
    # Ensure required columns exist
    required_cols = ["question", "answer", "category"]
    if not all(col in df.columns for col in required_cols):
        raise ValueError(f"CSV must contain columns: {required_cols}")
    
    # Basic stats
    print(f"Total FAQs: {len(df)}")
    print(f"Categories: {df['category'].nunique()}")
    print(f"\nCategory distribution:")
    print(df['category'].value_counts())
    
    return df


# Main execution example
if __name__ == "__main__":
    # Initialize bot
    bot = JupiterFAQBot()
    
    # Test some queries
    test_queries = [
        "How do I open a savings account?",
        "What are the cashback rates?",
        "Can I get a personal loan?",
        "How to use UPI?",
        "Tell me about investments"
    ]
    
    print("\n" + "="*50)
    print("Testing Jupiter FAQ Bot")
    print("="*50 + "\n")
    
    for query in test_queries:
        print(f"Q: {query}")
        response = bot.generate_response(query)
        print(f"A: {response}\n")
        
        # Show related queries
        related = bot.suggest_related_queries(query)
        if related:
            print("Related questions:")
            for r in related[:3]:
                print(f"  - {r}")
        print("\n" + "-"*50 + "\n")
    
    # Run evaluation
    print("\n" + "="*50)
    print("Running Evaluation")
    print("="*50 + "\n")
    
    evaluator = BotEvaluator(bot)
    
    # Retrieval accuracy
    accuracy_results = evaluator.evaluate_retrieval_accuracy()
    print(f"Retrieval Accuracy: {accuracy_results['accuracy']:.2%}")
    print(f"Correct: {accuracy_results['correct']}/{accuracy_results['total']}")
    
    # Response quality
    quality_results = evaluator.evaluate_response_quality()
    print(f"\nAverage Response Quality: {quality_results['average_quality_score']:.2%}")