Spaces:
Running
Running
File size: 2,693 Bytes
b480321 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import gradio as gr
import openai
import os
# OpenRouter API Key
OPENROUTER_API_KEY = "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"
OPENROUTER_MODEL = "sophosympatheia/rogue-rose-103b-v0.2:free"
# Initialize OpenAI client with OpenRouter base URL
print(f"Using API Key: {OPENROUTER_API_KEY}")
openai_client = openai.OpenAI(
api_key=OPENROUTER_API_KEY,
base_url="https://openrouter.ai/api/v1" # OpenRouter API endpoint
)
# Few-shot examples for text-to-SQL conversion
few_shot_examples = [
{
"input": "Show all customers from the USA.",
"output": "SELECT * FROM customers WHERE country = 'USA';"
},
{
"input": "Find the total sales for each product category.",
"output": "SELECT product_category, SUM(sales) AS total_sales FROM sales GROUP BY product_category;"
},
{
"input": "List all orders placed in 2023.",
"output": "SELECT * FROM orders WHERE YEAR(order_date) = 2023;"
}
]
def text_to_sql(query):
# Construct the prompt with few-shot examples
prompt = "Convert the following natural language queries to SQL:\n\n"
for example in few_shot_examples:
prompt += f"Input: {example['input']}\nOutput: {example['output']}\n\n"
prompt += f"Input: {query}\nOutput:"
print("Sending query to OpenRouter API...")
try:
response = openai_client.chat.completions.create(
model=OPENROUTER_MODEL,
messages=[
{
"role": "system",
"content": "You are a helpful assistant. Your task is to convert natural language queries into SQL queries. "
"Use the provided examples as a guide. If the query cannot be converted into SQL, say 'I cannot convert this query into SQL.'"
},
{
"role": "user",
"content": prompt
}
]
)
print("Received response from OpenRouter API.")
return response.choices[0].message.content
except Exception as e:
print(f"Error calling OpenRouter API: {e}")
return f"Error: {e}"
# Gradio UI
def gradio_ui():
with gr.Blocks() as demo:
gr.Markdown("## Text-to-SQL Converter. Enter a natural language query and get the corresponding SQL query!")
query_input = gr.Textbox(label="Enter your query")
submit_btn = gr.Button("Convert to SQL")
output = gr.Textbox(label="SQL Query")
submit_btn.click(text_to_sql, inputs=[query_input], outputs=[output])
return demo
demo = gradio_ui()
print("Launching Gradio UI...")
demo.launch() |