File size: 15,807 Bytes
83ede0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import colorsys
import json
import re
import time

import nltk
import numpy as np
from nltk import tokenize

nltk.download('punkt')
from google.oauth2 import service_account
from google.cloud import texttospeech

from typing import Dict, Optional, List

import jwt
import requests
import streamlit as st
from sentence_transformers import SentenceTransformer, util, CrossEncoder

JWT_SECRET = st.secrets["api_secret"]
JWT_ALGORITHM = st.secrets["api_algorithm"]
INFERENCE_TOKEN = st.secrets["api_inference"]
CONTEXT_API_URL = st.secrets["api_context"]
LFQA_API_URL = st.secrets["api_lfqa"]

headers = {"Authorization": f"Bearer {INFERENCE_TOKEN}"}
API_URL = "https://api-inference.huggingface.co/models/vblagoje/bart_lfqa"
API_URL_TTS = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_joint_finetune_conformer_fastspeech2_hifigan"


def api_inference_lfqa(model_input: str):
    payload = {
        "inputs": model_input,
        "parameters": {
            "truncation": "longest_first",
            "min_length": st.session_state["min_length"],
            "max_length": st.session_state["max_length"],
            "do_sample": st.session_state["do_sample"],
            "early_stopping": st.session_state["early_stopping"],
            "num_beams": st.session_state["num_beams"],
            "temperature": st.session_state["temperature"],
            "top_k": None,
            "top_p": None,
            "no_repeat_ngram_size": 3,
            "num_return_sequences": 1
        },
        "options": {
            "wait_for_model": True
        }
    }
    data = json.dumps(payload)
    response = requests.request("POST", API_URL, headers=headers, data=data)
    return json.loads(response.content.decode("utf-8"))


def inference_lfqa(model_input: str, header: dict):
    payload = {
        "model_input": model_input,
        "parameters": {
            "min_length": st.session_state["min_length"],
            "max_length": st.session_state["max_length"],
            "do_sample": st.session_state["do_sample"],
            "early_stopping": st.session_state["early_stopping"],
            "num_beams": st.session_state["num_beams"],
            "temperature": st.session_state["temperature"],
            "top_k": None,
            "top_p": None,
            "no_repeat_ngram_size": 3,
            "num_return_sequences": 1
        }
    }
    data = json.dumps(payload)
    try:
        response = requests.request("POST", LFQA_API_URL, headers=header, data=data)
        if response.status_code == 200:
            json_response = response.content.decode("utf-8")
            result = json.loads(json_response)
        else:
            result = {"error": f"LFQA service unavailable, status code={response.status_code}"}
    except requests.exceptions.RequestException as e:
        result = {"error": e}
    return result


def invoke_lfqa(service_backend: str, model_input: str, header: Optional[dict]):
    if "HuggingFace" == service_backend:
        inference_response = api_inference_lfqa(model_input)
    else:
        inference_response = inference_lfqa(model_input, header)
    return inference_response


@st.cache(allow_output_mutation=True, show_spinner=False)
def hf_tts(text: str):
    payload = {
        "inputs": text,
        "parameters": {
            "vocoder_tag": "str_or_none(none)",
            "threshold": 0.5,
            "minlenratio": 0.0,
            "maxlenratio": 10.0,
            "use_att_constraint": False,
            "backward_window": 1,
            "forward_window": 3,
            "speed_control_alpha": 1.0,
            "noise_scale": 0.333,
            "noise_scale_dur": 0.333
        },
        "options": {
            "wait_for_model": True
        }
    }
    data = json.dumps(payload)
    response = requests.request("POST", API_URL_TTS, headers=headers, data=data)
    return response.content


@st.cache(allow_output_mutation=True, show_spinner=False)
def google_tts(text: str, private_key_id: str, private_key: str, client_email: str):
    config = {
        "private_key_id": private_key_id,
        "private_key": f"-----BEGIN PRIVATE KEY-----\n{private_key}\n-----END PRIVATE KEY-----\n",
        "client_email": client_email,
        "token_uri": "https://oauth2.googleapis.com/token",
    }
    credentials = service_account.Credentials.from_service_account_info(config)
    client = texttospeech.TextToSpeechClient(credentials=credentials)

    synthesis_input = texttospeech.SynthesisInput(text=text)

    # Build the voice request, select the language code ("en-US") and the ssml
    # voice gender ("neutral")
    voice = texttospeech.VoiceSelectionParams(language_code="en-US",
                                              ssml_gender=texttospeech.SsmlVoiceGender.NEUTRAL)

    # Select the type of audio file you want returned
    audio_config = texttospeech.AudioConfig(audio_encoding=texttospeech.AudioEncoding.MP3)

    # Perform the text-to-speech request on the text input with the selected
    # voice parameters and audio file type
    response = client.synthesize_speech(input=synthesis_input, voice=voice, audio_config=audio_config)
    return response


def request_context_passages(question, header):
    try:
        response = requests.request("GET", CONTEXT_API_URL + question, headers=header)
        if response.status_code == 200:
            json_response = response.content.decode("utf-8")
            result = json.loads(json_response)
        else:
            result = {"error": f"Context passage service unavailable, status code={response.status_code}"}
    except requests.exceptions.RequestException as e:
        result = {"error": e}

    return result


@st.cache(allow_output_mutation=True, show_spinner=False)
def get_sentence_transformer():
    return SentenceTransformer('all-MiniLM-L6-v2')


@st.cache(allow_output_mutation=True, show_spinner=False)
def get_sentence_transformer_encoding(sentences):
    model = get_sentence_transformer()
    return model.encode([sentence for sentence in sentences], convert_to_tensor=True)


def sign_jwt() -> Dict[str, str]:
    payload = {
        "expires": time.time() + 6000
    }
    token = jwt.encode(payload, JWT_SECRET, algorithm=JWT_ALGORITHM)
    return token


def extract_sentences_from_passages(passages):
    sentences = []
    for idx, node in enumerate(passages):
        sentences.extend(tokenize.sent_tokenize(node["text"]))
    return sentences


def similarity_color_picker(similarity: float):
    value = int(similarity * 75)
    rgb = colorsys.hsv_to_rgb(value / 300., 1.0, 1.0)
    return [round(255 * x) for x in rgb]


def rgb_to_hex(rgb):
    return '%02x%02x%02x' % tuple(rgb)


def similiarity_to_hex(similarity: float):
    return rgb_to_hex(similarity_color_picker(similarity))


def rerank(question: str, passages: List[str], include_rank: int = 4) -> List[str]:
    ce = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
    question_passage_combinations = [[question, p["text"]] for p in passages]

    # Compute the similarity scores for these combinations
    similarity_scores = ce.predict(question_passage_combinations)

    # Sort the scores in decreasing order
    sim_ranking_idx = np.flip(np.argsort(similarity_scores))
    return [passages[rank_idx] for rank_idx in sim_ranking_idx[:include_rank]]


def answer_to_context_similarity(generated_answer, context_passages, topk=3):
    context_sentences = extract_sentences_from_passages(context_passages)
    context_sentences_e = get_sentence_transformer_encoding(context_sentences)
    answer_sentences = tokenize.sent_tokenize(generated_answer)
    answer_sentences_e = get_sentence_transformer_encoding(answer_sentences)
    search_result = util.semantic_search(answer_sentences_e, context_sentences_e, top_k=topk)
    result = []
    for idx, r in enumerate(search_result):
        context = []
        for idx_c in range(topk):
            context.append({"source": context_sentences[r[idx_c]["corpus_id"]], "score": r[idx_c]["score"]})
        result.append({"answer": answer_sentences[idx], "context": context})
    return result


def post_process_answer(generated_answer):
    result = generated_answer
    # detect sentence boundaries regex pattern
    regex = r"([A-Z][a-z].*?[.:!?](?=$| [A-Z]))"
    answer_sentences = tokenize.sent_tokenize(generated_answer)
    # do we have truncated last sentence?
    if len(answer_sentences) > len(re.findall(regex, generated_answer)):
        drop_last_sentence = " ".join(s for s in answer_sentences[:-1])
        result = drop_last_sentence
    return result.strip()


def format_score(value: float, precision=2):
    return f"{value:.{precision}f}"


@st.cache(allow_output_mutation=True, show_spinner=False)
def get_answer(question: str):
    if not question:
        return {}

    resp: Dict[str, str] = {}
    if question and len(question.split()) > 3:
        header = {"Authorization": f"Bearer {sign_jwt()}"}
        context_passages = request_context_passages(question, header)
        if "error" in context_passages:
            resp = context_passages
        else:
            context_passages = rerank(question, context_passages)
            conditioned_context = "<P> " + " <P> ".join([d["text"] for d in context_passages])
            model_input = f'question: {question} context: {conditioned_context}'

            inference_response = invoke_lfqa(st.session_state["api_lfqa_selector"], model_input, header)
            if "error" in inference_response:
                resp = inference_response
            else:
                resp["context_passages"] = context_passages
                resp["answer"] = post_process_answer(inference_response[0]["generated_text"])
    else:
        resp = {"error": f"A longer, more descriptive question will receive a better answer. '{question}' is too short."}
    return resp


def app():
    with open('style.css') as f:
        st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
    footer = """

        <div class="footer-custom">

            Streamlit app - <a href="https://www.linkedin.com/in/danijel-petkovic-573309144/" target="_blank">Danijel Petkovic</a>  |   

            LFQA/DPR models - <a href="https://www.linkedin.com/in/blagojevicvladimir/" target="_blank">Vladimir Blagojevic</a>   |

            Guidance & Feedback - <a href="https://yjernite.github.io/" target="_blank">Yacine Jernite</a> |

            <a href="https://towardsdatascience.com/long-form-qa-beyond-eli5-an-updated-dataset-and-approach-319cb841aabb" target="_blank">Blog</a>

        </div>

    """
    st.markdown(footer, unsafe_allow_html=True)

    st.title('Wikipedia Assistant')
    st.header('We are migrating to new backend infrastructure. ETA - 15.6.2022')

    #question = st.text_input(
    #    label='Ask Wikipedia an open-ended question below; for example, "Why do airplanes leave contrails in the sky?"')
    question = ""
    spinner = st.empty()
    if question !="":
        spinner.markdown(
            f"""

            <div class="loader-wrapper">

            <div class="loader">

            </div>

            <p>Generating answer for: <b>{question}</b></p>

            </div>

            <label class="loader-note">Answer generation may take up to 20 sec. Please stand by.</label>

        """,
            unsafe_allow_html=True,
        )

    question_response = get_answer(question)
    if question_response:
        if "error" in question_response:
            st.warning(question_response["error"])
        else:
            spinner.markdown(f"")
            generated_answer = question_response["answer"]
            context_passages = question_response["context_passages"]
            sentence_similarity = answer_to_context_similarity(generated_answer, context_passages, topk=3)
            sentences = "<div class='sentence-wrapper'>"
            for item in sentence_similarity:
                sentences += '<span>'
                score = item["context"][0]["score"]
                support_sentence = item["context"][0]["source"]
                sentences += "".join([                    
                        f'  {item["answer"]}',
                        f'<span style="background-color: #{similiarity_to_hex(score)}" class="tooltip">',
                            f'{format_score(score, precision=1)}',
                f'<span class="tooltiptext"><b>Wikipedia source</b><br><br> {support_sentence} <br><br>Similarity: {format_score(score)}</span>'
                ])
                sentences += '</span>'                
            sentences += '</span>'                
            st.markdown(sentences, unsafe_allow_html=True)

            with st.spinner("Generating audio..."):
                if st.session_state["tts"] == "HuggingFace":
                    audio_file = hf_tts(generated_answer)
                    with open("out.flac", "wb") as f:
                        f.write(audio_file)
                else:
                    audio_file = google_tts(generated_answer, st.secrets["private_key_id"],
                                            st.secrets["private_key"], st.secrets["client_email"])
                    with open("out.mp3", "wb") as f:
                        f.write(audio_file.audio_content)

                audio_file = "out.flac" if st.session_state["tts"] == "HuggingFace" else "out.mp3"
                st.audio(audio_file)

            st.markdown("""<hr></hr>""", unsafe_allow_html=True)

            model = get_sentence_transformer()

            col1, col2 = st.columns(2)
            
            with col1:
                st.subheader("Context")
            with col2:
                selection = st.selectbox(
                    label="", 
                    options=('Paragraphs', 'Sentences', 'Answer Similarity'), 
                    help="Context represents Wikipedia passages used to generate the answer")
            question_e = model.encode(question, convert_to_tensor=True)
            if selection == "Paragraphs":
                sentences = extract_sentences_from_passages(context_passages)
                context_e = get_sentence_transformer_encoding(sentences)
                scores = util.cos_sim(question_e.repeat(context_e.shape[0], 1), context_e)
                similarity_scores = scores[0].squeeze().tolist()
                for idx, node in enumerate(context_passages):
                    node["answer_similarity"] = "{0:.2f}".format(similarity_scores[idx])
                context_passages = sorted(context_passages, key=lambda x: x["answer_similarity"], reverse=True)
                st.json(context_passages)
            elif selection == "Sentences":
                sentences = extract_sentences_from_passages(context_passages)
                sentences_e = get_sentence_transformer_encoding(sentences)
                scores = util.cos_sim(question_e.repeat(sentences_e.shape[0], 1), sentences_e)
                sentence_similarity_scores = scores[0].squeeze().tolist()
                result = []
                for idx, sentence in enumerate(sentences):
                    result.append(
                        {"text": sentence, "answer_similarity": "{0:.2f}".format(sentence_similarity_scores[idx])})
                context_sentences = json.dumps(sorted(result, key=lambda x: x["answer_similarity"], reverse=True))
                st.json(context_sentences)
            else:
                st.json(sentence_similarity)