File size: 9,411 Bytes
7d0bb4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
from manim import *
import math


class Source(VMobject):
    def __init__(
        self,
        mobject_group,
        letter,
        value,
        direction=LEFT,
        label=True,
        dependent=True,
        **kwargs,
    ):
        # initialize the vmobject
        super().__init__(**kwargs)
        self._direction = direction

        # If value is a number or override dependent is False
        if dependent is False or type(value) is int or type(value) is float:
            self.main_body = Circle().set_stroke(WHITE)
        else:
            self.main_body = (
                Square().set_stroke(WHITE).rotate(45 * DEGREES).scale(1 / np.sqrt(2))
            )

        # Add the scaled symbols first
        self.add(mobject_group.scale(0.5, about_point=self.main_body.get_center()))

        # Scale it down first and then add it onto the VMobject
        self.add(self.main_body.scale(0.5))

        if label:
            self.label = (
                MathTex(str(value) + r"\text{ " + letter + "}")
                .scale(0.5)
                .next_to(self.main_body, self._direction, buff=0.1)
            )
            self.add(self.label)
        else:
            self.label = None

    def get_terminals(self, val):
        if type(self.main_body) is Circle:
            proportion_offset = 0
        else:
            proportion_offset = -0.25

        if val == "positive":
            return self.main_body[0].point_from_proportion(0.25 + proportion_offset)
        elif val == "negative":
            return self.main_body[0].point_from_proportion(0.75 + proportion_offset)

    def center(self):
        self.shift(
            DOWN * self.main_body.get_center()[1] + LEFT * self.main_body.get_center()
        )

        return self

    def rotate(self, angle, *args, **kwargs):
        super().rotate(angle, about_point=self.main_body.get_center(), *args, **kwargs)
        if not self.label == None:
            self.label.rotate(-angle).next_to(self.main_body, self._direction, buff=0.1)

        return self


class Circuit(VMobject):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        # Get a VGroup() of components
        self.component_list = VGroup()

        # Effectively, the node_list contains all Node types
        self.node_list = VGroup()

        self.add(self.component_list)

        # Add node_list VGroup() of nodes (with wires)
        # Add Dot() for junctions
        self.add(self.node_list)

    # This function returns the endpoints of the wire.
    def __create_wire(self, end1, end2, diagonal=False, invert=False):
        # Check if a turn is necessary. Only satisfiable if:
        # 1. diagonal flag is not set/overriden to True
        # 2. end1.x != end2.x and end1.y != end2.y
        if (
            not math.isclose(end1[0], end2[0]) and not math.isclose(end1[1], end2[1])
        ) and diagonal is not True:
            # Define the turn
            if invert is True:
                turn = [end2[0], end1[1], 0]
            else:
                turn = [end1[0], end2[1], 0]
            return [end1, turn, end2]

        # This is diagonal, OR it is a straight line
        else:
            return [end1, end2]

    def add_components(self, *args):
        for component in args:
            self.component_list.add(component)

    def add_wire(
        self,
        end1,
        end2,
        diagonal=False,
        invert=False,
    ):
        wire = self.__create_wire(end1, end2, diagonal, invert)

        # First wire
        if len(self.node_list) == 0:
            # Create the first node
            node = Node()
            node.add_wire(wire)

            # Adding the newly editted node
            self.node_list.add(node)

            return wire
        # Not first wire.
        # Loop through all nodes and wires through each node
        else:
            intersections = []
            # Iterate through all nodes.
            for node in self.node_list:
                # search if a coordinate of the wire belong in the node.
                # If so, add to node intersections
                # search is a list that returns either True or coordinate or False
                # It is important because we can then add Dots() from this list.
                search = list(map(node.check_coord, wire))
                if not all([type(s) == bool and s == False for s in search]):
                    intersections.append(node)

                    # Go through the search
                    # If there is a coordinate, tell the node to add a junction there.
                    for dot in search:
                        if not type(dot) == bool:
                            node.add_dot(dot)


            # This means that the wire is not attached to any node,
            # Make a new node.
            if len(intersections) == 0:
                node = Node()
                node.add_wire(wire)
                node.set_color(WHITE)
                self.node_list.add(node)

            elif len(intersections) == 1:
                intersections[0].add_wire(wire)

            elif len(intersections) == 2:
                intersections[0].merge(intersections[1], wire)
                self.node_list.remove(intersections[1])

            elif len(intersections) == 3:
                intersections[0].merge(intersections[1], wire)
                intersections[0].merge(intersections[2])
                self.node_list.remove(intersections[1])
                self.node_list.remove(intersections[2])


class Node(VMobject):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        # NOTE In a future update, I want to try to
        # have designated calculated "voltages"
        # relative to ground using sympy or some python and spice
        # library. Something like pyspice or ngspice...
        # self.known_voltage = None
        # Voltage functionality has not been added in v2 yet.
        self.voltage = None

        self.coords = []
        self.junction_dots = VGroup()

        self.add(self.junction_dots)

        self.set_color(WHITE)

    def __update(self):
        self.clear_points()
        for path in self.coords:
            self.start_new_path(path[0])
            for coord in path[1:]:
                self.add_line_to(np.array(coord))

    def check_coord(self, coord):
        # coord is to be checked.
        # return a non-False value if:
        # 1. It paired coordinates in self.coords (and not endpoint)
        #       return True
        # 2. It is validated by line_intersection "proof"
        #       return the coordinate
        for wire in self.coords:
            # new wire is connected to an end of a wire.
            if np.allclose(coord, wire[0]) or np.allclose(coord, wire[-1]):
                return True

            # reading the endpoints of wire
            for i in range(len(wire) - 1):
                coord_is_in_between_a_line = validate_forms_approx_line(
                    coord, [wire[i], wire[i + 1]]
                )
                # Coord matches a coordinate that is in the middle.
                if (
                    np.allclose(coord, wire[i]) and i != 0
                ) or coord_is_in_between_a_line:
                    return coord

        return False

    def add_dot(self, dot_coord):
        self.junction_dots.add(Dot(dot_coord))

    # wire is just a matrix with dimensions 2n x 3 or 3 x 3
    # depending entirely on if it is a diagonal wire or not
    def add_wire(self, wire_param):
        if len(self.coords) == 0:
            self.coords.append(wire_param)
            self.__update()
            return

        # Check if continuity in any wire (assume False)
        cont = False
        # wire is a single path of arbitrary length. It's a dot chain.
        for wire, i in zip(self.coords, range(len(self.coords))):
            if np.allclose(wire[0], wire_param[0]):
                self.coords[i] = wire_param[1:][::-1] + wire
                cont = True
                break

            elif np.allclose(wire[0], wire_param[-1]):
                self.coords[i] = wire_param[:-1] + wire
                cont = True
                break

            elif np.allclose(wire[-1], wire_param[0]):
                self.coords[i] = wire + wire_param[1:]
                cont = True
                break

            elif np.allclose(wire[-1], wire_param[-1]):
                self.coords[i] = wire + wire_param[:-1][::-1]
                cont = True
                break

        # Aggregated data
        if cont is not True:
            self.coords.append(wire_param)

        self.__update()

    def merge(self, node, wire=False):
        if wire is not False:
            self.add_wire(wire)

        # Get all the junction dots.
        for dot in node.junction_dots:
            self.junction_dots.add(dot)

        self.coords = self.coords + node.coords
        node.clear_points()
        self.__update()


def distance(a, b):
    return np.sqrt(np.sum([i * i for i in np.array(a) - np.array(b)]))


def validate_forms_approx_line(coord, line, tolerance=1e-5):
    # Check if the sum of the distance(s) between a coordinate to the end(s) of a line
    # equates to the distance of the line
    return math.isclose(
        distance(coord, line[0]) + distance(coord, line[1]),
        distance(*line),
        rel_tol=tolerance,
    )