File size: 7,989 Bytes
bd366ed
 
 
 
 
 
ccf29e8
bd366ed
 
 
 
 
 
 
 
 
 
 
ccf29e8
bd366ed
 
ccf29e8
 
bd366ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccf29e8
bd366ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from .nn import mean_flat
#from . import dist_util
import functools

class AdversarialLoss(nn.Module):
    def __init__(self,  gan_type='WGAN_GP', gan_k=1, 
        lr_dis=1e-5 ):

        super(AdversarialLoss, self).__init__()
       
        self.gan_type = gan_type
        self.gan_k = gan_k
 
        model = NLayerDiscriminator().cuda()
        self.discriminator =  DDP(
                model,
                device_ids=[torch.device('cuda')],
                output_device=torch.device('cuda'),
                broadcast_buffers=False,
                bucket_cap_mb=128,
                find_unused_parameters=False,
            )
 
        if (gan_type in ['WGAN_GP', 'GAN']):
            self.optimizer = optim.Adam(
                self.discriminator.parameters(),
                 lr=lr_dis
            )
   
    def forward(self, fake, real):
        fake_detach = fake.detach()
        for _ in range(self.gan_k):
            self.optimizer.zero_grad()
            d_fake = self.discriminator(fake_detach)
            d_real = self.discriminator(real)
            if (self.gan_type.find('WGAN') >= 0):
                loss_d = (d_fake - d_real).mean()
                if self.gan_type.find('GP') >= 0:
                    epsilon = torch.rand(real.size(0), 1, 1, 1).cuda()
                    epsilon = epsilon.expand(real.size())
                    hat = fake_detach.mul(1 - epsilon) + real.mul(epsilon)
                    hat.requires_grad = True
                    d_hat = self.discriminator(hat)
                    gradients = torch.autograd.grad(
                        outputs=d_hat.sum(), inputs=hat,
                        retain_graph=True, create_graph=True, only_inputs=True
                    )[0]
                    gradients = gradients.view(gradients.size(0), -1)
                    gradient_norm = gradients.norm(2, dim=1)
                    gradient_penalty = 10 * gradient_norm.sub(1).pow(2).mean()
                    loss_d += gradient_penalty
 
            # print('d loss:', loss_d)
            # Discriminator update
            loss_d.backward()
            self.optimizer.step()

        d_fake_for_g = self.discriminator(fake)
        if (self.gan_type.find('WGAN') >= 0):
            loss_g = -d_fake_for_g 
    
        # Generator loss
        return  mean_flat(loss_g)



def conv3x3(in_channels, out_channels, stride=1):
    return nn.Conv2d(in_channels, out_channels, kernel_size=3, 
                     stride=stride, padding=1, bias=True)


def conv7x7(in_channels, out_channels, stride=1):
    return nn.Conv2d(in_channels, out_channels, kernel_size=7, 
                     stride=stride, padding=3, bias=True)


class Discriminator(nn.Module):
    def __init__(self, ):
        super(Discriminator, self).__init__()
        self.conv1 = conv7x7(3, 32)
        self.norm1 = nn.InstanceNorm2d(32, affine=True)
        self.LReLU1 = nn.LeakyReLU(0.2)

        self.conv2 = conv3x3(32, 32, 2)
        self.norm2 = nn.InstanceNorm2d(32, affine=True)
        self.LReLU2 = nn.LeakyReLU(0.2)

        self.conv3 = conv3x3(32, 64)
        self.norm3 = nn.InstanceNorm2d(64, affine=True)
        self.LReLU3 = nn.LeakyReLU(0.2)

        self.conv4 = conv3x3(64, 64, 2)
        self.norm4 = nn.InstanceNorm2d(64, affine=True)
        self.LReLU4 = nn.LeakyReLU(0.2)

        self.conv5 = conv3x3(64, 128)
        self.norm5 = nn.InstanceNorm2d(128, affine=True)
        self.LReLU5 = nn.LeakyReLU(0.2)

        self.conv6 = conv3x3(128, 128, 2)
        self.norm6 = nn.InstanceNorm2d(128, affine=True)
        self.LReLU6 = nn.LeakyReLU(0.2)

        self.conv7 = conv3x3(128, 256)
        self.norm7 = nn.InstanceNorm2d(256, affine=True)
        self.LReLU7 = nn.LeakyReLU(0.2)

        self.conv8 = conv3x3(256, 256, 2)
        self.norm8 = nn.InstanceNorm2d(256, affine=True)
        self.LReLU8 = nn.LeakyReLU(0.2)

        self.conv9 = conv3x3(256, 512)
        self.norm9 = nn.InstanceNorm2d(512, affine=True)
        self.LReLU9 = nn.LeakyReLU(0.2)

        self.conv10 = conv3x3(512, 512, 2)
        self.norm10 = nn.InstanceNorm2d(512, affine=True)
        self.LReLU10 = nn.LeakyReLU(0.2)

        self.conv11 = conv3x3(512, 32)
        self.norm11 = nn.InstanceNorm2d(32, affine=True)
        self.LReLU11 = nn.LeakyReLU(0.2)
        self.conv12 = conv3x3(32, 1)
 
        
    def forward(self, x):
        x = self.LReLU1(self.norm1(self.conv1(x)))
        x = self.LReLU2(self.norm2(self.conv2(x)))
        x = self.LReLU3(self.norm3(self.conv3(x)))
        x = self.LReLU4(self.norm4(self.conv4(x)))
        x = self.LReLU5(self.norm5(self.conv5(x)))
        x = self.LReLU6(self.norm6(self.conv6(x)))
        x = self.LReLU7(self.norm7(self.conv7(x)))
        x = self.LReLU8(self.norm8(self.conv8(x)))
        x = self.LReLU9(self.norm9(self.conv9(x)))
        x = self.LReLU10(self.norm10(self.conv10(x)))
        
        x = self.LReLU11(self.norm11(self.conv11(x)))
        x = self.conv12(x)
 
        return x        



def get_norm_layer(norm_type='instance'):
    """Return a normalization layer
    Parameters:
        norm_type (str) -- the name of the normalization layer: batch | instance | none
    For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev).
    For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics.
    """
    if norm_type == 'batch':
        norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True)
    elif norm_type == 'instance':
        norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
    elif norm_type == 'none':
        def norm_layer(x): return Identity()
    else:
        raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
    return norm_layer


class NLayerDiscriminator(nn.Module):
    """Defines a PatchGAN discriminator"""

    def __init__(self, input_nc=3, ndf=64, n_layers=3 ):
        """Construct a PatchGAN discriminator
        Parameters:
            input_nc (int)  -- the number of channels in input images
            ndf (int)       -- the number of filters in the last conv layer
            n_layers (int)  -- the number of conv layers in the discriminator
            norm_layer      -- normalization layer
        """
        super(NLayerDiscriminator, self).__init__()
        norm_layer = get_norm_layer(norm_type='instance')
        if type(norm_layer) == functools.partial:  # no need to use bias as BatchNorm2d has affine parameters
            use_bias = norm_layer.func == nn.InstanceNorm2d
        else:
            use_bias = norm_layer == nn.InstanceNorm2d

        kw = 4
        padw = 1
        sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
        nf_mult = 1
        nf_mult_prev = 1
        for n in range(1, n_layers):  # gradually increase the number of filters
            nf_mult_prev = nf_mult
            nf_mult = min(2 ** n, 8)
            sequence += [
                nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
                norm_layer(ndf * nf_mult),
                nn.LeakyReLU(0.2, True)
            ]

        nf_mult_prev = nf_mult
        nf_mult = min(2 ** n_layers, 8)
        sequence += [
            nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
            norm_layer(ndf * nf_mult),
            nn.LeakyReLU(0.2, True)
        ]

        sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)]  # output 1 channel prediction map
        self.model = nn.Sequential(*sequence)

    def forward(self, input):
        """Standard forward."""
        return self.model(input)