Spaces:
Runtime error
Runtime error
File size: 10,815 Bytes
869c0ac 02a7301 869c0ac ea68dfd 869c0ac ea68dfd 869c0ac ea68dfd 869c0ac e66133f 869c0ac e66133f 869c0ac aedf71e ea68dfd aedf71e 600e950 8741d10 600e950 8741d10 d7f0716 aedf71e 869c0ac ea68dfd 869c0ac aedf71e 869c0ac b7c9dfd f67abdb b7c9dfd 44050e3 869c0ac e66133f 869c0ac d533c9c 869c0ac e66133f 072978d e66133f c0cf681 e66133f 44acd97 e66133f 9725e54 9fca2a2 e66133f 072978d e66133f 9fca2a2 ea68dfd f67abdb ea68dfd f67abdb ea68dfd 9fca2a2 5e9c370 9fca2a2 5e9c370 9fca2a2 ea68dfd 9fca2a2 da472c4 ea68dfd da472c4 b7c9dfd da472c4 9fca2a2 f67abdb 5e9c370 9fca2a2 f67abdb 9fca2a2 f67abdb 9fca2a2 ffb86f0 0ff9228 ea68dfd 0ff9228 b7c9dfd ea68dfd 072978d 212ab44 ea68dfd f67abdb ea68dfd 9fca2a2 b7c9dfd f67abdb b7c9dfd ea68dfd f67abdb 5e9c370 7e864d5 f67abdb 7e864d5 f67abdb 7e864d5 869c0ac aedf71e 869c0ac e66133f 869c0ac e66133f 869c0ac e66133f 869c0ac e66133f 869c0ac ea68dfd 869c0ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
{
"cells": [
{
"cell_type": "markdown",
"id": "62c5865f",
"metadata": {},
"source": [
"<a href=\"https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/test_model.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6c7800a6",
"metadata": {},
"outputs": [],
"source": [
"try:\n",
" # are we running on Google Colab?\n",
" import google.colab\n",
" !git clone -q https://github.com/teticio/audio-diffusion.git\n",
" %cd audio-diffusion\n",
" !pip install -q -r requirements.txt\n",
"except:\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b447e2c4",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import sys\n",
"sys.path.insert(0, os.path.dirname(os.path.abspath(\"\")))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c2fc0e7a",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import random\n",
"import numpy as np\n",
"from datasets import load_dataset\n",
"from IPython.display import Audio\n",
"from audiodiffusion.mel import Mel\n",
"from audiodiffusion import AudioDiffusion"
]
},
{
"cell_type": "markdown",
"id": "7fd945bb",
"metadata": {},
"source": [
"### Select model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "97f24046",
"metadata": {},
"outputs": [],
"source": [
"#@markdown teticio/audio-diffusion-256 - trained on my Spotify \"liked\" playlist\n",
"\n",
"#@markdown teticio/audio-diffusion-breaks-256 - trained on samples used in music\n",
"\n",
"#@markdown teticio/audio-diffusion-instrumental-hiphop-256 - trained on instrumental hiphop\n",
"\n",
"model_id = \"teticio/audio-diffusion-256\" #@param [\"teticio/audio-diffusion-256\", \"teticio/audio-diffusion-breaks-256\", \"audio-diffusion-instrumenal-hiphop-256\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a3d45c36",
"metadata": {},
"outputs": [],
"source": [
"audio_diffusion = AudioDiffusion(model_id=model_id)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4dc17ac0",
"metadata": {},
"outputs": [],
"source": [
"mel = Mel(x_res=256, y_res=256)"
]
},
{
"cell_type": "markdown",
"id": "011fb5a1",
"metadata": {},
"source": [
"### Run model inference to generate mel spectrogram, audios and loops"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b809fed5",
"metadata": {},
"outputs": [],
"source": [
"generator = torch.Generator()\n",
"for _ in range(10):\n",
" print(f'Seed = {generator.seed()}')\n",
" image, (sample_rate, audio) = audio_diffusion.generate_spectrogram_and_audio(generator)\n",
" display(image)\n",
" display(Audio(audio, rate=sample_rate))\n",
" loop = AudioDiffusion.loop_it(audio, sample_rate)\n",
" if loop is not None:\n",
" display(Audio(loop, rate=sample_rate))\n",
" else:\n",
" print(\"Unable to determine loop points\")"
]
},
{
"cell_type": "markdown",
"id": "0bb03e33",
"metadata": {},
"source": [
"### Generate variations of audios"
]
},
{
"cell_type": "markdown",
"id": "80e5b5fa",
"metadata": {},
"source": [
"Try playing around with `start_steps`. Values closer to zero will produce new samples, while values closer to 1,000 will produce samples more faithful to the original."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a7e637e5",
"metadata": {},
"outputs": [],
"source": [
"seed = 16183389798189209330 #@param {type:\"integer\"}\n",
"image, (sample_rate,\n",
" audio) = audio_diffusion.generate_spectrogram_and_audio_from_audio(\n",
" generator=torch.Generator().manual_seed(seed))\n",
"display(image)\n",
"display(Audio(audio, rate=sample_rate))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a0fefe28",
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"start_steps = 500 #@param {type:\"slider\", min:0, max:1000, step:10}\n",
"track = AudioDiffusion.loop_it(audio, sample_rate, loops=1)\n",
"for variation in range(12):\n",
" image2, (\n",
" sample_rate, audio2\n",
" ) = audio_diffusion.generate_spectrogram_and_audio_from_audio(\n",
" raw_audio=audio,\n",
" start_step=start_steps)\n",
" display(image2)\n",
" display(Audio(audio2, rate=sample_rate))\n",
" track = np.concatenate([track, AudioDiffusion.loop_it(audio2, sample_rate, loops=1)])\n",
"display(Audio(track, rate=sample_rate))"
]
},
{
"cell_type": "markdown",
"id": "58a876c1",
"metadata": {},
"source": [
"### Generate continuations (\"out-painting\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b95d5780",
"metadata": {},
"outputs": [],
"source": [
"overlap_secs = 2 #@param {type:\"integer\"}\n",
"start_step = 0 #@param {type:\"slider\", min:0, max:1000, step:10}\n",
"overlap_samples = overlap_secs * sample_rate\n",
"track = audio\n",
"for variation in range(12):\n",
" image2, (\n",
" sample_rate, audio2\n",
" ) = audio_diffusion.generate_spectrogram_and_audio_from_audio(\n",
" raw_audio=audio[-overlap_samples:],\n",
" start_step=start_step,\n",
" mask_start_secs=overlap_secs)\n",
" display(image2)\n",
" display(Audio(audio2, rate=sample_rate))\n",
" track = np.concatenate([track, audio2[overlap_samples:]])\n",
" audio = audio2\n",
"display(Audio(track, rate=sample_rate))"
]
},
{
"cell_type": "markdown",
"id": "b6434d3f",
"metadata": {},
"source": [
"### Remix (style transfer)"
]
},
{
"cell_type": "markdown",
"id": "0da030b2",
"metadata": {},
"source": [
"Alternatively, you can start from another audio altogether, resulting in a kind of style transfer. Maintaining the same seed during generation fixes the style, while masking helps stitch consecutive segments together more smoothly."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fc620a80",
"metadata": {},
"outputs": [],
"source": [
"try:\n",
" # are we running on Google Colab?\n",
" from google.colab import files\n",
" audio_file = list(files.upload().keys())[0]\n",
"except:\n",
" audio_file = \"/home/teticio/Music/liked/El Michels Affair - Glaciers Of Ice.mp3\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5a257e69",
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"start_step = 500 #@param {type:\"slider\", min:0, max:1000, step:10}\n",
"overlap_secs = 2 #@param {type:\"integer\"}\n",
"mel.load_audio(audio_file)\n",
"overlap_samples = overlap_secs * mel.get_sample_rate()\n",
"slice_size = mel.x_res * mel.hop_length\n",
"stride = slice_size - overlap_samples\n",
"generator = torch.Generator()\n",
"seed = generator.seed()\n",
"print(f'Seed = {seed}')\n",
"track = np.array([])\n",
"not_first = 0\n",
"for sample in range(len(mel.audio) // stride):\n",
" generator.manual_seed(seed)\n",
" audio = np.array(mel.audio[sample * stride:sample * stride + slice_size])\n",
" if not_first:\n",
" # Normalize and re-insert generated audio\n",
" audio[:overlap_samples] = audio2[-overlap_samples:] * np.max(\n",
" audio[:overlap_samples]) / np.max(audio2[-overlap_samples:])\n",
" _, (sample_rate,\n",
" audio2) = audio_diffusion.generate_spectrogram_and_audio_from_audio(\n",
" raw_audio=audio,\n",
" start_step=start_step,\n",
" generator=generator,\n",
" mask_start_secs=overlap_secs * not_first)\n",
" track = np.concatenate([track, audio2[overlap_samples * not_first:]])\n",
" not_first = 1\n",
" display(Audio(track, rate=sample_rate))"
]
},
{
"cell_type": "markdown",
"id": "924ff9d5",
"metadata": {},
"source": [
"### Fill the gap (\"in-painting\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0200264c",
"metadata": {},
"outputs": [],
"source": [
"slice = 3 #@param {type:\"integer\"}\n",
"audio = mel.get_audio_slice(slice)\n",
"_, (sample_rate,\n",
" audio2) = audio_diffusion.generate_spectrogram_and_audio_from_audio(\n",
" raw_audio=mel.get_audio_slice(slice),\n",
" mask_start_secs=1,\n",
" mask_end_secs=1)\n",
"display(Audio(audio, rate=sample_rate))\n",
"display(Audio(audio2, rate=sample_rate))"
]
},
{
"cell_type": "markdown",
"id": "ef54cef3",
"metadata": {},
"source": [
"### Compare results with random sample from training set"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "269ee816",
"metadata": {},
"outputs": [],
"source": [
"ds = load_dataset(model_id)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b9023846",
"metadata": {},
"outputs": [],
"source": [
"image = random.choice(ds['train'])['image']\n",
"image"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "492e2334",
"metadata": {},
"outputs": [],
"source": [
"audio = mel.image_to_audio(image)\n",
"Audio(data=audio, rate=mel.get_sample_rate())"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"provenance": []
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "huggingface",
"language": "python",
"name": "huggingface"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|