Spaces:
Runtime error
Runtime error
File size: 13,151 Bytes
8aa7c27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
# adpated from https://github.com/huggingface/diffusers/blob/main/scripts/convert_original_stable_diffusion_to_diffusers.py
import torch
from diffusers import AutoencoderKL
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
"""
if n_shave_prefix_segments >= 0:
return ".".join(path.split(".")[n_shave_prefix_segments:])
else:
return ".".join(path.split(".")[:n_shave_prefix_segments])
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside resnets to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
new_item = shave_segments(
new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
"""
Updates paths inside attentions to the new naming scheme (local renaming)
"""
mapping = []
for old_item in old_list:
new_item = old_item
new_item = new_item.replace("norm.weight", "group_norm.weight")
new_item = new_item.replace("norm.bias", "group_norm.bias")
new_item = new_item.replace("q.weight", "query.weight")
new_item = new_item.replace("q.bias", "query.bias")
new_item = new_item.replace("k.weight", "key.weight")
new_item = new_item.replace("k.bias", "key.bias")
new_item = new_item.replace("v.weight", "value.weight")
new_item = new_item.replace("v.bias", "value.bias")
new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
new_item = shave_segments(
new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({"old": old_item, "new": new_item})
return mapping
def assign_to_checkpoint(paths,
checkpoint,
old_checkpoint,
attention_paths_to_split=None,
additional_replacements=None,
config=None):
"""
This does the final conversion step: take locally converted weights and apply a global renaming
to them. It splits attention layers, and takes into account additional replacements
that may arise.
Assigns the weights to the new checkpoint.
"""
assert isinstance(
paths, list
), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
old_tensor = old_checkpoint[path]
channels = old_tensor.shape[0] // 3
target_shape = (-1,
channels) if len(old_tensor.shape) == 3 else (-1)
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
old_tensor = old_tensor.reshape((num_heads, 3 * channels //
num_heads) + old_tensor.shape[1:])
query, key, value = old_tensor.split(channels // num_heads, dim=1)
checkpoint[path_map["query"]] = query.reshape(target_shape)
checkpoint[path_map["key"]] = key.reshape(target_shape)
checkpoint[path_map["value"]] = value.reshape(target_shape)
for path in paths:
new_path = path["new"]
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
if additional_replacements is not None:
for replacement in additional_replacements:
new_path = new_path.replace(replacement["old"],
replacement["new"])
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
else:
checkpoint[new_path] = old_checkpoint[path["old"]]
def conv_attn_to_linear(checkpoint):
keys = list(checkpoint.keys())
attn_keys = ["query.weight", "key.weight", "value.weight"]
for key in keys:
if ".".join(key.split(".")[-2:]) in attn_keys:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0, 0]
elif "proj_attn.weight" in key:
if checkpoint[key].ndim > 2:
checkpoint[key] = checkpoint[key][:, :, 0]
def create_vae_diffusers_config(original_config):
"""
Creates a config for the diffusers based on the config of the LDM model.
"""
vae_params = original_config.model.params.ddconfig
_ = original_config.model.params.embed_dim
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
config = dict(
sample_size=vae_params.resolution,
in_channels=vae_params.in_channels,
out_channels=vae_params.out_ch,
down_block_types=tuple(down_block_types),
up_block_types=tuple(up_block_types),
block_out_channels=tuple(block_out_channels),
latent_channels=vae_params.z_channels,
layers_per_block=vae_params.num_res_blocks,
)
return config
def convert_ldm_vae_checkpoint(checkpoint, config):
# extract state dict for VAE
vae_state_dict = checkpoint
new_checkpoint = {}
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict[
"encoder.conv_in.weight"]
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict[
"encoder.conv_in.bias"]
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict[
"encoder.conv_out.weight"]
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict[
"encoder.conv_out.bias"]
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict[
"encoder.norm_out.weight"]
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict[
"encoder.norm_out.bias"]
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict[
"decoder.conv_in.weight"]
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict[
"decoder.conv_in.bias"]
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict[
"decoder.conv_out.weight"]
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict[
"decoder.conv_out.bias"]
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict[
"decoder.norm_out.weight"]
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict[
"decoder.norm_out.bias"]
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
new_checkpoint["post_quant_conv.weight"] = vae_state_dict[
"post_quant_conv.weight"]
new_checkpoint["post_quant_conv.bias"] = vae_state_dict[
"post_quant_conv.bias"]
# Retrieves the keys for the encoder down blocks only
num_down_blocks = len({
".".join(layer.split(".")[:3])
for layer in vae_state_dict if "encoder.down" in layer
})
down_blocks = {
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key]
for layer_id in range(num_down_blocks)
}
# Retrieves the keys for the decoder up blocks only
num_up_blocks = len({
".".join(layer.split(".")[:3])
for layer in vae_state_dict if "decoder.up" in layer
})
up_blocks = {
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key]
for layer_id in range(num_up_blocks)
}
for i in range(num_down_blocks):
resnets = [
key for key in down_blocks[i]
if f"down.{i}" in key and f"down.{i}.downsample" not in key
]
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
new_checkpoint[
f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.weight")
new_checkpoint[
f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.bias")
paths = renew_vae_resnet_paths(resnets)
meta_path = {
"old": f"down.{i}.block",
"new": f"down_blocks.{i}.resnets"
}
assign_to_checkpoint(paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
config=config)
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [
key for key in mid_resnets if f"encoder.mid.block_{i}" in key
]
paths = renew_vae_resnet_paths(resnets)
meta_path = {
"old": f"mid.block_{i}",
"new": f"mid_block.resnets.{i - 1}"
}
assign_to_checkpoint(paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
config=config)
mid_attentions = [
key for key in vae_state_dict if "encoder.mid.attn" in key
]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
config=config)
conv_attn_to_linear(new_checkpoint)
for i in range(num_up_blocks):
block_id = num_up_blocks - 1 - i
resnets = [
key for key in up_blocks[block_id]
if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
]
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
new_checkpoint[
f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.weight"]
new_checkpoint[
f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.bias"]
paths = renew_vae_resnet_paths(resnets)
meta_path = {
"old": f"up.{block_id}.block",
"new": f"up_blocks.{i}.resnets"
}
assign_to_checkpoint(paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
config=config)
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
num_mid_res_blocks = 2
for i in range(1, num_mid_res_blocks + 1):
resnets = [
key for key in mid_resnets if f"decoder.mid.block_{i}" in key
]
paths = renew_vae_resnet_paths(resnets)
meta_path = {
"old": f"mid.block_{i}",
"new": f"mid_block.resnets.{i - 1}"
}
assign_to_checkpoint(paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
config=config)
mid_attentions = [
key for key in vae_state_dict if "decoder.mid.attn" in key
]
paths = renew_vae_attention_paths(mid_attentions)
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
assign_to_checkpoint(paths,
new_checkpoint,
vae_state_dict,
additional_replacements=[meta_path],
config=config)
conv_attn_to_linear(new_checkpoint)
return new_checkpoint
def convert_ldm_to_hf_vae(ldm_checkpoint, ldm_config, hf_checkpoint):
checkpoint = torch.load(ldm_checkpoint)["state_dict"]
# Convert the VAE model.
vae_config = create_vae_diffusers_config(ldm_config)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(
checkpoint, vae_config)
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
vae.save_pretrained(hf_checkpoint)
|