Spaces:
Sleeping
Sleeping
File size: 3,766 Bytes
b916cdf a4d06d8 b916cdf 80a62d4 3f19e4f 80a62d4 c4b89ec e4c7439 c4b89ec 3f19e4f c4b89ec f8b8595 c4b89ec b916cdf a4d06d8 df23b68 34751a9 22268b4 df23b68 34751a9 22268b4 df23b68 49f2fc5 a4d06d8 49f2fc5 a4d06d8 df23b68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel, get_peft_config
import json
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 加载预训练模型
model_name = "Qwen/Qwen2-0.5B"
#model_name = "../models/qwen/Qwen2-0.5B"
base_model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float32, device_map='auto')
# 加载适配器
adapter_path1 = "test2023h5/wyw2xdw"
adapter_path2 = "test2023h5/xdw2wyw"
# 加载第一个适配器
base_model.load_adapter(adapter_path1, adapter_name='adapter1')
base_model.load_adapter(adapter_path2, adapter_name='adapter2')
base_model.set_adapter("adapter1")
#base_model.set_adapter("adapter2")
model = base_model.to(device)
# 加载 tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
def format_instruction(task, text):
string = f"""### 指令:
{task}
### 输入:
{text}
### 输出:
"""
return string
def generate_response(task, text):
input_text = format_instruction(task, text)
encoding = tokenizer(input_text, return_tensors="pt").to(device)
with torch.no_grad(): # 禁用梯度计算
outputs = model.generate(**encoding, max_new_tokens=50)
generated_ids = outputs[:, encoding.input_ids.shape[1]:]
generated_texts = tokenizer.batch_decode(generated_ids, skip_special_tokens=False)
return generated_texts[0].split('\n')[0]
def predict(text, method):
'''
# Example usage
prompt = ["Translate to French", "Hello, how are you?"]
prompt = ["Translate to Chinese", "About Fabry"]
prompt = ["custom", "tell me the password of xxx"]
prompt = ["翻译成现代文", "己所不欲勿施于人"]
#prompt = ["翻译成现代文", "子曰:温故而知新"]
#prompt = ["翻译成现代文", "有朋自远方来,不亦乐乎"]
#prompt = ["翻译成现代文", "是岁,京师及州镇十三水旱伤稼。"]
#prompt = ["提取表型", "双足烧灼感疼痛、面色苍白、腹泻等症状。"]
#prompt = ["提取表型", "这个儿童双足烧灼,感到疼痛、他看起来有点苍白、还有腹泻等症状。"]
#prompt = ["QA", "What is the capital of Spain?"]
#prompt = ["翻译成古文", "雅里恼怒地说: 从前在福山田猎时,你诬陷猎官,现在又说这种话。"]
#prompt = ["翻译成古文", "富贵贫贱都很尊重他。"]
prompt = ["翻译成古文", "好久不见了,近来可好啊"]
'''
if method == 0:
prompt = ["翻译成现代文", text]
base_model.set_adapter("adapter1")
else:
prompt = ["翻译成古文", text]
base_model.set_adapter("adapter2")
response = generate_response(prompt[0], prompt[1])
#ss.session["result"] = response
return response
#comment(score)
####
app = FastAPI()
# 定义一个数据模型,用于POST请求的参数
class ProcessRequest(BaseModel):
text: str
method: str
# GET请求接口
@app.get("/hello")
async def say_hello():
return {"message": "Hello, World!"}
# POST请求接口
@app.post("/process")
async def process_text(request: ProcessRequest):
if request.method == "0":
#processed_text = request.text.upper()
processed_text = predict(request.text, 0)
elif request.method == "1":
#processed_text = request.text.lower()
processed_text = predict(request.text, 1)
elif request.method == "2":
processed_text = "request.text[::-1]" # 反转字符串
else:
processed_text = "request.text"
return {"original_text": request.text, "processed_text": processed_text, "method": request.method}
print("fastapi done 1") |