File size: 8,839 Bytes
fbf5042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc78d1c
fbf5042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e7bc58
fbf5042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e7bc58
fbf5042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import re
import json
import base64
import pandas as pd
import gradio as gr
import pyterrier as pt
pt.init()
import pyt_splade
factory = pyt_splade.SpladeFactory()
pipe_queries = factory.query()
pipe_docs = factory.indexing()

COLAB_NAME = 'pyterrier_splade.ipynb'
COLAB_INSTALL = '''
!pip install -q git+https://github.com/naver/splade
!pip install -q git+https://github.com/seanmacavaney/pyt_splade@misc
'''.strip()

def df2code(df):
  rows = []
  for row in df.itertuples(index=False):
    rows.append(f'  {dict(row._asdict())},')
  rows = '\n'.join(rows)
  return f'''pd.DataFrame([
{rows}
])'''

def code2colab(code):
  enc_code = base64.b64encode((COLAB_INSTALL + '\n\n' + code.strip()).encode()).decode()
  dec = base64.b64decode(enc_code)
  url = f'https://colaburl.macavaney.us/?py64={enc_code}&name={COLAB_NAME}'
  return f'<div style="text-align: center; margin-bottom: -16px;"><a href="{url}" rel="nofollow" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" style="margin: 0; display: inline-block;" /></a></div>'

def code2md(code):
  return f'''
{code2colab(code)}

```python
{code.strip()}
```
'''

def generate_vis(df, mode='Document'):
  if len(df) == 0:
    return ''
  result = []
  if mode == 'Document':
    max_score = max(max(t.values()) for t in df['toks'])
  for row in df.itertuples(index=False):
    if mode == 'Query':
      tok_scores = {m.group(2): float(m.group(1)) for m in re.finditer(r'combine:0=([0-9.]+)\(([^)]+)\)', row.query)}
      max_score = max(tok_scores.values())
      orig_tokens = factory.tokenizer.tokenize(row.query_0)
      id = row.qid
    else:
      tok_scores = row.toks
      orig_tokens = factory.tokenizer.tokenize(row.text)
      id = row.docno
    def toks2span(toks):
      return '<kbd> </kbd>'.join(f'<kbd style="background-color: rgba(66, 135, 245, {tok_scores.get(t, 0)/max_score});">{t}</kbd>' for t in toks)
    orig_tokens_set = set(orig_tokens)
    exp_tokens = [t for t, v in sorted(tok_scores.items(), key=lambda x: (-x[1], x[0])) if t not in orig_tokens_set]
    result.append(f'''
<div style="font-size: 1.2em;">{mode}: <strong>{id}</strong></div>
<div style="margin: 4px 0 16px; padding: 4px; border: 1px solid black;">
<div>
{toks2span(orig_tokens)}
</div>
<div><strong>Expansion Tokens:</strong> {toks2span(exp_tokens)}</div>
</div>
''')
  return '\n'.join(result)

def predict_query(input):
  code = f'''import pandas as pd
import pyterrier as pt ; pt.init()
import pyt_splade

factory = pyt_splade.SpladeFactory()

query_pipeline = factory.query()

query_pipeline({df2code(input)})
'''
  res = pipe_queries(input)
  vis = generate_vis(res, mode='Query')
  return (res, code2md(code), vis)

def predict_doc(input):
  code = f'''import pandas as pd
import pyterrier as pt ; pt.init()
import pyt_splade

factory = pyt_splade.SpladeFactory()

doc_pipeline = factory.indexing()

doc_pipeline({df2code(input)})
'''
  res = pipe_docs(input)
  vis = generate_vis(res, mode='Document')
  res['toks'] = [json.dumps({k: round(v, 4) for k, v in t.items()}) for t in res['toks']]
  return (res, code2md(code), vis)

with gr.Blocks(css="table.font-mono td, table.font-mono th { white-space: pre-line; font-size: 11px; line-height: 16px; } table.font-mono td input { width: 95%; } th .cursor-pointer {display: none;} th .min-h-\[2\.3rem\] {min-height: inherit;}") as demo:
    gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>🐕 PyTerrier: SPLADE</h1>")
    gr.Markdown(open('README.md', 'rt').read().split('\n---\n')[-1])

    example_inp = pd.DataFrame([
      {'qid': '1112389', 'query': 'what is the county for grand rapids, mn'},
    ])
    example_out = predict_query(example_inp)
    inputs, outputs = [], []
    with gr.Row().style(equal_height=False):
      with gr.Column(scale=1):
        with gr.Tab('Pipeline Input'):
          inputs.append(gr.Dataframe(
            headers=["qid", "query"],
            datatype=["str", "str"],
            col_count=(2, "fixed"),
            row_count=1,
            wrap=True,
            value=example_inp,
          ))
        submit_btn = gr.Button("Submit", variant="primary")
      with gr.Column(scale=2):
        with gr.Tab('Pipeline Output'):
          outputs.append(gr.Dataframe(
            headers=["qid", "query", "docno", "score", "rank", "text"],
            datatype=["str", "str", "str", "number", "number", "str"],
            col_count=6,
            row_count=1,
            wrap=True,
            value=example_out[0],
          ))
        with gr.Tab('Code'):
          outputs.append(gr.Markdown(value=example_out[1]))
        with gr.Tab('Visualisation'):
          outputs.append(gr.HTML(value=example_out[2]))
    submit_btn.click(predict_query, inputs, outputs, api_name="predict_query", scroll_to_output=True)

    gr.Markdown('''
### Document Encoding

The document encoder works similarly to the query encoder: it is a `D→D` (document rewriting, doc-to-doc) transformer, and can be used in pipelines accordingly.
It maps a document's text into a dictionary with terms from the document re-weighted and weighted expansion terms added.

<div class="pipeline">
  <div class="df" title="Document Frame">D</div>
  <div class="transformer" title="SPLADE Indexing Transformer">SPLADE</div>
  <div class="df" title="Document Frame">D</div>
</div>

''')

    example_inp = pd.DataFrame([
      {'docno': '0', 'text': 'The presence of communication amid scientific minds was equally important to the success of the Manhattan Project as scientific intellect was. The only cloud hanging over the impressive achievement of the atomic researchers and engineers is what their success truly meant; hundreds of thousands of innocent lives obliterated.'},
    ])
    example_out = predict_doc(example_inp)
    inputs, outputs = [], []
    with gr.Row().style(equal_height=False):
      with gr.Column(scale=1):
        with gr.Tab("Pipeline Input"):
          inputs.append(gr.Dataframe(
            headers=["docno", "text"],
            datatype=["str", "str"],
            col_count=(2, "fixed"),
            row_count=1,
            wrap=True,
            value=example_inp,
          ))
        submit_btn = gr.Button("Submit", variant="primary")
      with gr.Column(scale=2):
        with gr.Tab("Pipeline Output"):
          outputs.append(gr.Dataframe(
            headers=["qid", "query", "docno", "score", "rank", "text"],
            datatype=["str", "str", "str", "number", "number", "str"],
            col_count=6,
            row_count=1,
            wrap=True,
            value=example_out[0],
          ))
        with gr.Tab('Code'):
          outputs.append(gr.Markdown(value=example_out[1]))
        with gr.Tab('Visualisation'):
          outputs.append(gr.HTML(value=example_out[2]))
    submit_btn.click(predict_doc, inputs, outputs, api_name="predict_doc", scroll_to_output=True)

    gr.Markdown('''
### Putting it all together

When you use the document encoder in an indexing pipeline, the rewritting document contents are indexed:

<div class="pipeline">
  <div class="df" title="Document Frame">D</div>
  <div class="transformer" title="SPLADE Indexing Transformer">SPLADE</div>
  <div class="df" title="Document Frame">D</div>
  <div class="transformer boring" title="Indexer">Indexer</div>
  <div class="artefact" title="SPLADE Index">IDX</div>
</div>

```python
import pyterrer as pt
pt.init(version='snapshot')
import pyt_splade

dataset = pt.get_dataset('irds:msmarco-passage')
factory = pyt_splade.SpladeFactory()

indexer = pt.IterDictIndexer('./msmarco_psg', pretokenized=True)

indxer_pipe = factory.indexing() >> indexer
indxer_pipe.index(dataset.get_corpus_iter())
```

Once you built an index, you can build a retrieval pipeline that first encodes the query,
and then performs retrieval:

<div class="pipeline">
  <div class="df" title="Query Frame">Q</div>
  <div class="transformer" title="SPLADE Query Transformer">SPLADE</div>
  <div class="df" title="Query Frame">Q</div>
  <div class="transformer boring" title="Term Frequency Transformer">TF Retriever <div class="artefact" title="SPLADE Index">IDX</div></div>
  <div class="df" title="Result Frame">R</div>
</div>

```python
splade_retr = factory.query() >> pt.BatchRetrieve('./msmarco_psg', wmodel='Tf')
```

### References & Credits

This package uses [Naver's SPLADE repository](https://github.com/naver/splade).

 - Thibault Formal, Benjamin Piwowarski, Stéphane Clinchant. [SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking](https://arxiv.org/abs/2107.05720). SIGIR 2021.
 - Craig Macdonald, Nicola Tonellotto, Sean MacAvaney, Iadh Ounis. [PyTerrier: Declarative Experimentation in Python from BM25 to Dense Retrieval](https://dl.acm.org/doi/abs/10.1145/3459637.3482013). CIKM 2021.
''')


demo.launch(share=False)