Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from collections.abc import Iterator | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
# Token limits | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 512 | |
# Description | |
DESCRIPTION = """\ | |
# Demo for "Self-Training Elicits Concise Reasoning in Large Language Models" | |
This Space showcases the model [tergel/llama-3.2-3b-instruct-gsm8k-fs-gpt4o-bon](https://huggingface.co/tergel/llama-3.2-3b-instruct-gsm8k-fs-gpt4o-bon) | |
We provide a simple chat interface allowing you to observe the concise CoT solutions that our model can produce. Feel free to play with it. | |
""" | |
# Decide on device | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n\n<p>**Warning**: Running on CPU 🥶 – this may be extremely slow. We will upgrade to GPUs soon.</p>" | |
# Load model and tokenizer | |
model_id = "tergel/llama-3.2-3b-instruct-gsm8k-fs-gpt4o-bon" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map=None if device == "cpu" else "auto", | |
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32, | |
) | |
model.to(device) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
tokenizer.use_default_system_prompt = False | |
def generate( | |
message: str, | |
chat_history: list[dict], | |
system_prompt: str = "", | |
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, | |
temperature: float = 0.7, | |
top_p: float = 0.95, | |
top_k: int = 40, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
# Build conversation | |
conversation = [] | |
if system_prompt: | |
conversation.append({"role": "system", "content": system_prompt}) | |
conversation += chat_history | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt", add_generation_prompt=True) | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Textbox(label="System prompt", lines=6), | |
gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=4.0, | |
step=0.1, | |
value=0.7, | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.95, | |
), | |
gr.Slider( | |
label="Top-k", | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=40, | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.2, | |
), | |
], | |
stop_btn=None, | |
examples=[ | |
[ | |
"A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?" | |
], | |
[ | |
"Claire makes a 3 egg omelet every morning for breakfast. How many dozens of eggs will she eat in 4 weeks?" | |
], | |
[ | |
"James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total meters does he run a week?" | |
], | |
], | |
cache_examples=False, | |
type="messages", | |
) | |
with gr.Blocks(css_paths="style.css", fill_height=True) as demo: | |
gr.Markdown(DESCRIPTION) | |
chat_interface.render() | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |