Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,585 Bytes
0c8db5a 5b6a681 0c8db5a 5b6a681 0c8db5a 5b6a681 0c8db5a 5b6a681 0c8db5a 5b6a681 0c8db5a 5b6a681 0c8db5a 5b6a681 0c8db5a 5b6a681 0c8db5a 5b6a681 0c8db5a ee701f8 0c8db5a 5b6a681 0c8db5a 5b6a681 0c8db5a 5b6a681 0c8db5a 5b6a681 0c8db5a 5b6a681 0c8db5a 5b6a681 0c8db5a 5b6a681 0c8db5a 5b6a681 0c8db5a 5b6a681 0c8db5a 5b6a681 0c8db5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import os
from collections.abc import Iterator
from threading import Thread
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
# Token limits
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 512
# Description
DESCRIPTION = """\
# Demo for "Self-Training Elicits Concise Reasoning in Large Language Models"
This Space showcases the model [tergel/llama-3.2-3b-instruct-gsm8k-fs-gpt4o-bon](https://huggingface.co/tergel/llama-3.2-3b-instruct-gsm8k-fs-gpt4o-bon)
We provide a simple chat interface allowing you to observe the concise CoT solutions that our model can produce. Feel free to play with it.
"""
# Decide on device
device = "cuda" if torch.cuda.is_available() else "cpu"
if not torch.cuda.is_available():
DESCRIPTION += "\n\n<p>**Warning**: Running on CPU 🥶 – this may be extremely slow. We will upgrade to GPUs soon.</p>"
# Load model and tokenizer
model_id = "tergel/llama-3.2-3b-instruct-gsm8k-fs-gpt4o-bon"
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map=None if device == "cpu" else "auto",
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
@spaces.GPU
def generate(
message: str,
chat_history: list[dict],
system_prompt: str = "",
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.7,
top_p: float = 0.95,
top_k: int = 40,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
# Build conversation
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
conversation += chat_history
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt", add_generation_prompt=True)
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.7,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.95,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=40,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
[
"A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?"
],
[
"Claire makes a 3 egg omelet every morning for breakfast. How many dozens of eggs will she eat in 4 weeks?"
],
[
"James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total meters does he run a week?"
],
],
cache_examples=False,
type="messages",
)
with gr.Blocks(css_paths="style.css", fill_height=True) as demo:
gr.Markdown(DESCRIPTION)
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|