import os from collections.abc import Iterator from threading import Thread import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer # Token limits MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 512 # Description DESCRIPTION = """\ # Demo for "Self-Training Elicits Concise Reasoning in Large Language Models" This Space showcases the model [tergel/llama-3.2-3b-instruct-gsm8k-fs-gpt4o-bon](https://huggingface.co/tergel/llama-3.2-3b-instruct-gsm8k-fs-gpt4o-bon) We provide a simple chat interface allowing you to observe the concise CoT solutions that our model can produce. Feel free to play with it. """ # Decide on device device = "cuda" if torch.cuda.is_available() else "cpu" if not torch.cuda.is_available(): DESCRIPTION += "\n\n
**Warning**: Running on CPU 🥶 – this may be extremely slow. We will upgrade to GPUs soon.
" # Load model and tokenizer model_id = "tergel/llama-3.2-3b-instruct-gsm8k-fs-gpt4o-bon" model = AutoModelForCausalLM.from_pretrained( model_id, device_map=None if device == "cpu" else "auto", torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32, ) model.to(device) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.use_default_system_prompt = False @spaces.GPU def generate( message: str, chat_history: list[dict], system_prompt: str = "", max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, temperature: float = 0.7, top_p: float = 0.95, top_k: int = 40, repetition_penalty: float = 1.2, ) -> Iterator[str]: # Build conversation conversation = [] if system_prompt: conversation.append({"role": "system", "content": system_prompt}) conversation += chat_history conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt", add_generation_prompt=True) if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Textbox(label="System prompt", lines=6), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.7, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.95, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=40, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], stop_btn=None, examples=[ [ "A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?" ], [ "Claire makes a 3 egg omelet every morning for breakfast. How many dozens of eggs will she eat in 4 weeks?" ], [ "James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total meters does he run a week?" ], ], cache_examples=False, type="messages", ) with gr.Blocks(css_paths="style.css", fill_height=True) as demo: gr.Markdown(DESCRIPTION) chat_interface.render() if __name__ == "__main__": demo.queue(max_size=20).launch()