File size: 6,379 Bytes
858a6b3
 
43c7551
 
858a6b3
 
43c7551
d087928
64dc6be
858a6b3
 
 
 
 
64dc6be
 
43c7551
64dc6be
43c7551
 
 
 
 
 
 
64dc6be
 
43c7551
 
858a6b3
64dc6be
858a6b3
64dc6be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
858a6b3
64dc6be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43c7551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64dc6be
 
 
 
 
 
 
43c7551
 
 
 
858a6b3
5794114
858a6b3
 
 
 
 
d087928
858a6b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d087928
 
 
64dc6be
d087928
 
 
 
43c7551
64dc6be
43c7551
 
 
 
 
 
 
 
 
 
 
 
 
 
d087928
43c7551
 
2ae1ac2
64dc6be
2ae1ac2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import cv2
import numpy as np
import ezdxf
import gradio as gr
from pathlib import Path

coordis =  []

def save_matrix(mtx, dist, path):
    """Save camera matrix and distortion coefficients to file."""
    cv_file = cv2.FileStorage(path, cv2.FILE_STORAGE_WRITE)
    cv_file.write('K', mtx)
    cv_file.write('D', dist)
    cv_file.release()

def load_matrix(path):
    """Load camera matrix and distortion coefficients from file."""
    cv_file = cv2.FileStorage(path, cv2.FILE_STORAGE_READ)
    camera_matrix = cv_file.getNode('K').mat()
    dist_matrix = cv_file.getNode('D').mat()
    cv_file.release()
    return [camera_matrix, dist_matrix]

def correct_image(image, yaml):
    image = cv2.imread(image)
    mtx, dist = load_matrix(yaml.name)
    dst = cv2.undistort(image, mtx, dist, None, None)    
    return dst


def color_tab(file_path, yaml):

    coordinates = []
    img = cv2.imread(file_path)
    
    mtx, dist = load_matrix(yaml.name)
    
    img = cv2.undistort(img, mtx, dist, None, None)
    
    height, width, _ = img.shape
    
    # Convert the image to grayscale
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    
    # Apply a threshold to convert the grayscale image into a binary image
    _, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY)
    
    # Find the contours in the binary image
    contours, hierarchy = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    
    # Select the contour with the largest area (the object we want to extract the corners from)
    contour = max(contours, key=cv2.contourArea)
    
    # Approximate the contour with a polygon
    epsilon = 0.01 * cv2.arcLength(contour, True)
    approx = cv2.approxPolyDP(contour, epsilon, True)

    # Draw the polygon on the original image
    cv2.polylines(img, [approx], True, (0, 255, 0), thickness=2)
  
        
    doc = ezdxf.new("R2010", setup=True)
    msp = doc.modelspace()

    # Print the coordinates of the corners
    for corner in approx:
        x, y = corner[0]
        coordinates.append([x,y])
        
    #This method of adding line is brute force and needs to be changed, find a way to generalize for polygons
    msp.add_line((coordinates[0][0], -coordinates[0][1]), (coordinates[1][0], -coordinates[1][1]))
    msp.add_line((coordinates[1][0], -coordinates[1][1]), (coordinates[2][0], -coordinates[2][1]))
    msp.add_line((coordinates[2][0], -coordinates[2][1]), (coordinates[3][0], -coordinates[3][1]))
    msp.add_line((coordinates[3][0], -coordinates[3][1]), (coordinates[0][0], -coordinates[0][1]))
    msp.add_line((0,0), (0, -height))
    msp.add_line((0, -height), (width, -height))
    msp.add_line((width, -height), (width, 0))
    msp.add_line((width, 0), (0,0))

    doc.saveas("output.dxf") 
    return "output.dxf", img

def corner_tab(img, evt: gr.SelectData):
    
    height, width, _ = img.shape

    row, col = evt.index
    coordis.append([row, col])
    
    if len(coordis) == 4 :
        coordinates = np.array(coordis)
        dwg = ezdxf.new("R2010")
        msp = dwg.modelspace()
        dwg.layers.new(name="greeny green lines", dxfattribs={"color": 3})
        
        msp.add_line((coordinates[0][0], -coordinates[0][1]), (coordinates[1][0], -coordinates[1][1]))
        msp.add_line((coordinates[1][0], -coordinates[1][1]), (coordinates[2][0], -coordinates[2][1]))
        msp.add_line((coordinates[2][0], -coordinates[2][1]), (coordinates[3][0], -coordinates[3][1]))
        msp.add_line((coordinates[3][0], -coordinates[3][1]), (coordinates[0][0], -coordinates[0][1]))
        
        msp.add_line((0,0), (0, -height))
        msp.add_line((0, -height), (width, -height))
        msp.add_line((width, -height), (width, 0))
        msp.add_line((width, 0), (0,0))
        
        
        dwg.saveas("output.dxf") 
        coordis.clear()

        return "output.dxf"


def generate_matrix(filename, board_vert, board_horz):
    """Main function to calibrate camera and undistort image."""

    filename_stem = Path(filename).stem

    # Define the checkerboard pattern size and criteria for corner detection
    CHECKERBOARD = (int(board_vert)-1, int(board_horz)-1)
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

    # Initialize object points and image points arrays
    object_points = []  # 3D points in real world space
    image_points = []  # 2D points in image plane

    # Create the object points for the chessboard corners
    objectp3d = np.zeros((1, CHECKERBOARD[0] * CHECKERBOARD[1], 3), np.float32)
    objectp3d[0, :, :2] = np.mgrid[0:CHECKERBOARD[0], 0:CHECKERBOARD[1]].T.reshape(-1, 2)

    # Load the image and convert to grayscale
    image = cv2.imread(filename)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    # Find chessboard corners
    ret, corners = cv2.findChessboardCorners(gray, CHECKERBOARD, cv2.CALIB_CB_ADAPTIVE_THRESH
                                             + cv2.CALIB_CB_FAST_CHECK + cv2.CALIB_CB_NORMALIZE_IMAGE)

    # If corners found, add object points and image points to arrays
    if ret:
        object_points.append(objectp3d)
        corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
        image_points.append(corners2)
        image = cv2.drawChessboardCorners(image, CHECKERBOARD, corners2, ret)

    # Calibrate camera using object points and image points
    h, w = gray.shape[:2]
    try:
        ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(object_points, image_points, gray.shape[::-1], None, None)
        # Save camera matrix and distortion coefficients to file
        save_matrix(mtx, dist, f"{filename_stem}.yml")
        return f"{filename_stem}.yml"
    except:
        print("Please check the Chessboard Dimensions")
        
        
def slider(img, h1, s1, v1, h2, s2, v2):
    # Load the image
    img = cv2.imread(img)

    while(1):
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)

        # Create the NumPy arrays
        lower_red = np.array([h1, s1, v1])
        upper_red = np.array([h2, s2, v2])
        
        # Convert every element to integer using int() function
        lower_red = np.array([int(x) for x in lower_red])
        upper_red = np.array([int(x) for x in upper_red])
        

        mask = cv2.inRange(img, lower_red, upper_red)
        res = cv2.bitwise_and(img,img, mask= mask)
    
        return res