Spaces:
Sleeping
Sleeping
File size: 2,009 Bytes
44883c6 52719f3 44883c6 7963048 44883c6 5064dd2 44883c6 52719f3 44883c6 52719f3 5064dd2 52719f3 44883c6 5064dd2 44883c6 5064dd2 44883c6 5064dd2 7963048 5064dd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import ripple
import streamlit as stl
from tqdm.auto import tqdm
# streamlit app
stl.set_page_config(
page_title="Ripple",
)
stl.title("ripple search")
stl.write(
"An app that uses text input to search for described images, using embeddings of selected image datasets. Uses contrastive learning models(CLIP) and the sentence-transformers"
)
stl.link_button(
label="Full library code",
url="https://github.com/kelechi-c/ripple_net",
)
dataset = stl.selectbox(
"choose huggingface dataset(bigger datasets take more time to embed..)",
options=[
"huggan/few-shot-art-painting",
"huggan/wikiart",
"zh-plus/tiny-imagenet",
"lambdalabs/naruto-blip-captions",
"detection-datasets/fashionpedia",
"fantasyfish/laion-art",
"Chris1/cityscapes"
],
)
# initalized global variables
embedded_data = None
embedder = None
text_search = None
search_term = None
ret_images = []
scores = []
if dataset and stl.button("embed image dataset"):
with stl.spinner("Initializing and creating image embeddings from dataset"):
embedder = ripple.ImageEmbedder(
dataset, retrieval_type="text-image", dataset_type="huggingface"
)
embedded_data = embedder.create_embeddings(device="cpu")
stl.success("Sucessfully embedded and dcreated image index")
if embedded_data is not None:
text_search = ripple.TextSearch(embedded_data, embedder.embed_model)
stl.success("Initialized text search class")
search_term = stl.text_input("Text description/search for image")
if search_term:
with stl.spinner("retrieving images with description.."):
scores, ret_images = text_search.get_similar_images(search_term, k_images=4)
stl.success(f"sucessfully retrieved {len(ret_images)} images")
try:
for count, score, image in tqdm(zip(range(len(ret_images)), scores, ret_images)):
stl.image(image["image"][count])
stl.write(score)
except Exceptio as e:
st.error(e)
|