File size: 4,869 Bytes
93f7efb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import sys

import torch

import json
import numpy as np
from omegaconf import OmegaConf

from codeclm.trainer.codec_song_pl import CodecLM_PL
from codeclm.models import CodecLM
from codeclm.models import builders

from separator import Separator


class LeVoInference(torch.nn.Module):
    def __init__(self, ckpt_path):
        super().__init__()

        torch.backends.cudnn.enabled = False 
        OmegaConf.register_new_resolver("eval", lambda x: eval(x))
        OmegaConf.register_new_resolver("concat", lambda *x: [xxx for xx in x for xxx in xx])
        OmegaConf.register_new_resolver("get_fname", lambda: 'default')
        OmegaConf.register_new_resolver("load_yaml", lambda x: list(OmegaConf.load(x)))

        cfg_path = os.path.join(ckpt_path, 'config.yaml')
        self.pt_path = os.path.join(ckpt_path, 'model.pt')

        self.cfg = OmegaConf.load(cfg_path)
        self.cfg.mode = 'inference'
        self.max_duration = self.cfg.max_dur

        self.default_params = dict(
            top_p = 0.0,
            record_tokens = True,
            record_window = 50,
            extend_stride = 5,
            duration = self.max_duration,
        )


    def forward(self, lyric: str, description: str = None, prompt_audio_path: os.PathLike = None, genre: str = None, auto_prompt_path: os.PathLike = None, params = dict()):
        if prompt_audio_path is not None and os.path.exists(prompt_audio_path):
            separator = Separator()
            audio_tokenizer = builders.get_audio_tokenizer_model(self.cfg.audio_tokenizer_checkpoint, self.cfg)
            audio_tokenizer = audio_tokenizer.eval().cuda()
            seperate_tokenizer = builders.get_audio_tokenizer_model(self.cfg.audio_tokenizer_checkpoint_sep, self.cfg)
            seperate_tokenizer = seperate_tokenizer.eval().cuda()
            pmt_wav, vocal_wav, bgm_wav = separator.run(prompt_audio_path)
            pmt_wav = pmt_wav.cuda()
            vocal_wav = vocal_wav.cuda()
            bgm_wav = bgm_wav.cuda()
            pmt_wav, _ = audio_tokenizer.encode(pmt_wav)
            vocal_wav, bgm_wav = seperate_tokenizer.encode(vocal_wav, bgm_wav)
            melody_is_wav = False
            melody_is_wav = False
            del audio_tokenizer
            del seperate_tokenizer
            del separator
        elif genre is not None and auto_prompt_path is not None:
            auto_prompt = torch.load(auto_prompt_path)
            merge_prompt = [item for sublist in auto_prompt.values() for item in sublist]
            if genre == "Auto": 
                prompt_token = merge_prompt[np.random.randint(0, len(merge_prompt))]
            else:
                prompt_token = auto_prompt[genre][np.random.randint(0, len(auto_prompt[genre]))]
            pmt_wav = prompt_token[:,[0],:]
            vocal_wav = prompt_token[:,[1],:]
            bgm_wav = prompt_token[:,[2],:]
            melody_is_wav = False
        else:
            pmt_wav = None
            vocal_wav = None
            bgm_wav = None
            melody_is_wav = True

        model_light = CodecLM_PL(self.cfg, self.pt_path)
        model_light = model_light.eval()
        model_light.audiolm.cfg = self.cfg
        model = CodecLM(name = "tmp",
            lm = model_light.audiolm,
            audiotokenizer = None,
            max_duration = self.max_duration,
            seperate_tokenizer = None,
        )
        del model_light
        model.lm = model.lm.cuda().to(torch.float16)
        params = {**self.default_params, **params}
        model.set_generation_params(**params)

        generate_inp = {
            'lyrics': [lyric.replace("  ", " ")],
            'descriptions': [description],
            'melody_wavs': pmt_wav,
            'vocal_wavs': vocal_wav,
            'bgm_wavs': bgm_wav,
            'melody_is_wav': melody_is_wav,
        }

        with torch.autocast(device_type="cuda", dtype=torch.float16):
            tokens = model.generate(**generate_inp, return_tokens=True)

        del model
        torch.cuda.empty_cache()

        seperate_tokenizer = builders.get_audio_tokenizer_model(self.cfg.audio_tokenizer_checkpoint_sep, self.cfg)
        seperate_tokenizer = seperate_tokenizer.eval().cuda()
        model = CodecLM(name = "tmp",
            lm = None,
            audiotokenizer = None,
            max_duration = self.max_duration,
            seperate_tokenizer = seperate_tokenizer,
        )

        if tokens.shape[-1] > 3000:
            tokens = tokens[..., :3000]
            
        with torch.no_grad():
            if melody_is_wav:
                wav_seperate = model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav)
            else:
                wav_seperate = model.generate_audio(tokens)

        del seperate_tokenizer
        del model
        torch.cuda.empty_cache()

        return wav_seperate[0]