Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,937 Bytes
7b75adb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
# Open Source Model Licensed under the Apache License Version 2.0
# and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import os
from typing import Tuple, List, Union
from functools import partial
import copy
import numpy as np
import torch
import torch.nn as nn
import yaml
from .attention_blocks import (
FourierEmbedder,
Transformer,
CrossAttentionDecoder,
PointCrossAttentionEncoder,
)
from .surface_extractors import MCSurfaceExtractor, SurfaceExtractors, Latent2MeshOutput
from .volume_decoders import (
VanillaVolumeDecoder,
)
from ...utils.misc import logger, synchronize_timer, smart_load_model
from ...utils.mesh_utils import extract_geometry_fast
class DiagonalGaussianDistribution(object):
def __init__(
self,
parameters: Union[torch.Tensor, List[torch.Tensor]],
deterministic=False,
feat_dim=1,
):
"""
Initialize a diagonal Gaussian distribution with mean and log-variance parameters.
Args:
parameters (Union[torch.Tensor, List[torch.Tensor]]):
Either a single tensor containing concatenated mean and log-variance along `feat_dim`,
or a list of two tensors [mean, logvar].
deterministic (bool, optional): If True, the distribution is deterministic (zero variance).
Default is False. feat_dim (int, optional): Dimension along which mean and logvar are
concatenated if parameters is a single tensor. Default is 1.
"""
self.feat_dim = feat_dim
self.parameters = parameters
if isinstance(parameters, list):
self.mean = parameters[0]
self.logvar = parameters[1]
else:
self.mean, self.logvar = torch.chunk(parameters, 2, dim=feat_dim)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
if self.deterministic:
self.var = self.std = torch.zeros_like(self.mean)
def sample(self):
"""
Sample from the diagonal Gaussian distribution.
Returns:
torch.Tensor: A sample tensor with the same shape as the mean.
"""
x = self.mean + self.std * torch.randn_like(self.mean)
return x
def kl(self, other=None, dims=(1, 2, 3)):
"""
Compute the Kullback-Leibler (KL) divergence between this distribution and another.
If `other` is None, compute KL divergence to a standard normal distribution N(0, I).
Args:
other (DiagonalGaussianDistribution, optional): Another diagonal Gaussian distribution.
dims (tuple, optional): Dimensions along which to compute the mean KL divergence.
Default is (1, 2, 3).
Returns:
torch.Tensor: The mean KL divergence value.
"""
if self.deterministic:
return torch.Tensor([0.0])
else:
if other is None:
return 0.5 * torch.mean(
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=dims
)
else:
return 0.5 * torch.mean(
torch.pow(self.mean - other.mean, 2) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar,
dim=dims,
)
def nll(self, sample, dims=(1, 2, 3)):
if self.deterministic:
return torch.Tensor([0.0])
logtwopi = np.log(2.0 * np.pi)
return 0.5 * torch.sum(
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
dim=dims,
)
def mode(self):
return self.mean
class VectsetVAE(nn.Module):
@classmethod
@synchronize_timer("VectsetVAE Model Loading")
def from_single_file(
cls,
ckpt_path,
config_path,
device="cuda",
dtype=torch.float16,
use_safetensors=None,
**kwargs,
):
# load config
with open(config_path, "r") as f:
config = yaml.safe_load(f)
# load ckpt
if use_safetensors:
ckpt_path = ckpt_path.replace(".ckpt", ".safetensors")
if not os.path.exists(ckpt_path):
raise FileNotFoundError(f"Model file {ckpt_path} not found")
logger.info(f"Loading model from {ckpt_path}")
if use_safetensors:
import safetensors.torch
ckpt = safetensors.torch.load_file(ckpt_path, device="cpu")
else:
ckpt = torch.load(ckpt_path, map_location="cpu", weights_only=True)
model_kwargs = config["params"]
model_kwargs.update(kwargs)
model = cls(**model_kwargs)
model.load_state_dict(ckpt)
model.to(device=device, dtype=dtype)
return model
@classmethod
def from_pretrained(
cls,
model_path,
device="cuda",
dtype=torch.float16,
use_safetensors=False,
variant="fp16",
subfolder="hunyuan3d-vae-v2-1",
**kwargs,
):
config_path, ckpt_path = smart_load_model(
model_path,
subfolder=subfolder,
use_safetensors=use_safetensors,
variant=variant,
)
return cls.from_single_file(
ckpt_path,
config_path,
device=device,
dtype=dtype,
use_safetensors=use_safetensors,
**kwargs,
)
def init_from_ckpt(self, path, ignore_keys=()):
state_dict = torch.load(path, map_location="cpu")
state_dict = state_dict.get("state_dict", state_dict)
keys = list(state_dict.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del state_dict[k]
missing, unexpected = self.load_state_dict(state_dict, strict=False)
print(
f"Restored from {path} with {len(missing)} missing and"
f" {len(unexpected)} unexpected keys"
)
if len(missing) > 0:
print(f"Missing Keys: {missing}")
print(f"Unexpected Keys: {unexpected}")
def __init__(self, volume_decoder=None, surface_extractor=None):
super().__init__()
if volume_decoder is None:
volume_decoder = VanillaVolumeDecoder()
if surface_extractor is None:
surface_extractor = MCSurfaceExtractor()
self.volume_decoder = volume_decoder
self.surface_extractor = surface_extractor
def latents2mesh(self, latents: torch.FloatTensor, **kwargs):
with synchronize_timer("Volume decoding"):
grid_logits = self.volume_decoder(latents, self.geo_decoder, **kwargs)
with synchronize_timer("Surface extraction"):
outputs = self.surface_extractor(grid_logits, **kwargs)
return outputs
class VolumeDecoderShapeVAE(VectsetVAE):
def __init__(
self,
*,
num_latents: int,
embed_dim: int,
width: int,
heads: int,
num_decoder_layers: int,
num_encoder_layers: int = 8,
pc_size: int = 5120,
pc_sharpedge_size: int = 5120,
point_feats: int = 3,
downsample_ratio: int = 20,
geo_decoder_downsample_ratio: int = 1,
geo_decoder_mlp_expand_ratio: int = 4,
geo_decoder_ln_post: bool = True,
num_freqs: int = 8,
include_pi: bool = True,
qkv_bias: bool = True,
qk_norm: bool = False,
label_type: str = "binary",
drop_path_rate: float = 0.0,
scale_factor: float = 1.0,
use_ln_post: bool = True,
ckpt_path=None,
volume_decoder=None,
surface_extractor=None,
):
super().__init__(volume_decoder, surface_extractor)
self.geo_decoder_ln_post = geo_decoder_ln_post
self.downsample_ratio = downsample_ratio
self.fourier_embedder = FourierEmbedder(
num_freqs=num_freqs, include_pi=include_pi
)
self.encoder = PointCrossAttentionEncoder(
fourier_embedder=self.fourier_embedder,
num_latents=num_latents,
downsample_ratio=self.downsample_ratio,
pc_size=pc_size,
pc_sharpedge_size=pc_sharpedge_size,
point_feats=point_feats,
width=width,
heads=heads,
layers=num_encoder_layers,
qkv_bias=qkv_bias,
use_ln_post=use_ln_post,
qk_norm=qk_norm,
)
self.pre_kl = nn.Linear(width, embed_dim * 2)
self.post_kl = nn.Linear(embed_dim, width)
self.transformer = Transformer(
width=width,
layers=num_decoder_layers,
heads=heads,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
drop_path_rate=drop_path_rate,
)
self.geo_decoder = CrossAttentionDecoder(
fourier_embedder=self.fourier_embedder,
out_channels=1,
mlp_expand_ratio=geo_decoder_mlp_expand_ratio,
downsample_ratio=geo_decoder_downsample_ratio,
enable_ln_post=self.geo_decoder_ln_post,
width=width // geo_decoder_downsample_ratio,
heads=heads // geo_decoder_downsample_ratio,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
label_type=label_type,
)
self.scale_factor = scale_factor
self.latent_shape = (num_latents, embed_dim)
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path)
def forward(self, latents):
latents = self.post_kl(latents)
latents = self.transformer(latents)
return latents
def encode(self, surface, sample_posterior=True, return_pc_info=False):
pc, feats = surface[:, :, :3], surface[:, :, 3:]
latents, pc_infos = self.encoder(pc, feats)
# print(latents.shape, self.pre_kl.weight.shape)
moments = self.pre_kl(latents)
posterior = DiagonalGaussianDistribution(moments, feat_dim=-1)
if sample_posterior:
latents = posterior.sample()
else:
latents = posterior.mode()
if return_pc_info:
return latents, pc_infos
else:
return latents
def encode_shape(self, surface, return_pc_info=False):
pc, feats = surface[:, :, :3], surface[:, :, 3:]
latents, pc_infos = self.encoder(pc, feats)
if return_pc_info:
return latents, pc_infos
else:
return latents
def decode(self, latents):
latents = self.post_kl(latents)
latents = self.transformer(latents)
return latents
def query_geometry(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
logits = self.geo_decoder(queries=queries, latents=latents).squeeze(-1)
return logits
def latents2mesh(self, latents: torch.FloatTensor, **kwargs):
coarse_kwargs = copy.deepcopy(kwargs)
coarse_kwargs["octree_resolution"] = 256
with synchronize_timer("Coarse Volume decoding"):
coarse_grid_logits = self.volume_decoder(
latents, self.geo_decoder, **coarse_kwargs
)
with synchronize_timer("Coarse Surface extraction"):
coarse_mesh = self.surface_extractor(coarse_grid_logits, **coarse_kwargs)
assert len(coarse_mesh) == 1
bbox_gen_by_coarse_matching_cube_mesh = np.stack(
[coarse_mesh[0].mesh_v.max(0), coarse_mesh[0].mesh_v.min(0)]
)
bbox_gen_by_coarse_matching_cube_mesh_range = (
bbox_gen_by_coarse_matching_cube_mesh[0]
- bbox_gen_by_coarse_matching_cube_mesh[1]
)
# extend by 10%
bbox_gen_by_coarse_matching_cube_mesh[0] += (
bbox_gen_by_coarse_matching_cube_mesh_range * 0.1
)
bbox_gen_by_coarse_matching_cube_mesh[1] -= (
bbox_gen_by_coarse_matching_cube_mesh_range * 0.1
)
with synchronize_timer("Fine-grained Volume decoding"):
grid_logits = self.volume_decoder(
latents,
self.geo_decoder,
bbox_corner=bbox_gen_by_coarse_matching_cube_mesh[None],
**kwargs,
)
with synchronize_timer("Fine-grained Surface extraction"):
outputs = self.surface_extractor(
grid_logits,
bbox_corner=bbox_gen_by_coarse_matching_cube_mesh[None],
**kwargs,
)
return outputs
def latent2mesh_2(
self,
latents: torch.FloatTensor,
bounds: Union[Tuple[float], List[float], float] = 1.1,
octree_depth: int = 7,
num_chunks: int = 10000,
mc_level: float = -1 / 512,
octree_resolution: int = None,
mc_mode: str = "mc",
) -> List[Latent2MeshOutput]:
"""
Args:
latents: [bs, num_latents, dim]
bounds:
octree_depth:
num_chunks:
Returns:
mesh_outputs (List[MeshOutput]): the mesh outputs list.
"""
outputs = []
geometric_func = partial(self.query_geometry, latents=latents)
# 2. decode geometry
device = latents.device
if mc_mode == "dmc" and not hasattr(self, "diffdmc"):
from diso import DiffDMC
self.diffdmc = DiffDMC(dtype=torch.float32).to(device)
mesh_v_f, has_surface = extract_geometry_fast(
geometric_func=geometric_func,
device=device,
batch_size=len(latents),
bounds=bounds,
octree_depth=octree_depth,
num_chunks=num_chunks,
disable=False,
mc_level=mc_level,
octree_resolution=octree_resolution,
diffdmc=self.diffdmc if mc_mode == "dmc" else None,
mc_mode=mc_mode,
)
# 3. decode texture
for i, ((mesh_v, mesh_f), is_surface) in enumerate(zip(mesh_v_f, has_surface)):
if not is_surface:
outputs.append(None)
continue
out = Latent2MeshOutput()
out.mesh_v = mesh_v
out.mesh_f = mesh_f
outputs.append(out)
return outputs
|