File size: 3,974 Bytes
18d2806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Open Source Model Licensed under the Apache License Version 2.0
# and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.

# Copyright (C) 2024 THL A29 Limited, a Tencent company.  All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.

# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.

# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.


import os
import random

import numpy as np
import torch
from diffusers import AutoPipelineForText2Image


def seed_everything(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    os.environ["PL_GLOBAL_SEED"] = str(seed)


class HunyuanDiTPipeline:
    def __init__(
        self,
        model_path="Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled",
        device='cuda'
    ):
        self.device = device
        self.pipe = AutoPipelineForText2Image.from_pretrained(
            model_path,
            torch_dtype=torch.float16,
            enable_pag=True,
            pag_applied_layers=["blocks.(16|17|18|19)"]
        ).to(device)
        self.pos_txt = ",白色背景,3D风格,最佳质量"
        self.neg_txt = "文本,特写,裁剪,出框,最差质量,低质量,JPEG伪影,PGLY,重复,病态," \
                       "残缺,多余的手指,变异的手,画得不好的手,画得不好的脸,变异,畸形,模糊,脱水,糟糕的解剖学," \
                       "糟糕的比例,多余的肢体,克隆的脸,毁容,恶心的比例,畸形的肢体,缺失的手臂,缺失的腿," \
                       "额外的手臂,额外的腿,融合的手指,手指太多,长脖子"

    def compile(self):
        # accelarate hunyuan-dit transformer,first inference will cost long time
        torch.set_float32_matmul_precision('high')
        self.pipe.transformer = torch.compile(self.pipe.transformer, fullgraph=True)
        # self.pipe.vae.decode = torch.compile(self.pipe.vae.decode, fullgraph=True)
        generator = torch.Generator(device=self.pipe.device)  # infer once for hot-start
        out_img = self.pipe(
            prompt='美少女战士',
            negative_prompt='模糊',
            num_inference_steps=25,
            pag_scale=1.3,
            width=1024,
            height=1024,
            generator=generator,
            return_dict=False
        )[0][0]

    @torch.no_grad()
    def __call__(self, prompt, seed=0):
        seed_everything(seed)
        generator = torch.Generator(device=self.pipe.device)
        generator = generator.manual_seed(int(seed))
        out_img = self.pipe(
            prompt=prompt[:60]+self.pos_txt,
            negative_prompt=self.neg_txt,
            num_inference_steps=25,
            pag_scale=1.3,
            width=1024,
            height=1024,
            generator=generator,
            return_dict=False
        )[0][0]
        return out_img