Spaces:
Running
on
Zero
Running
on
Zero
File size: 35,065 Bytes
600759a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 |
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import argparse, sys, os, math, re, glob
from typing import *
import bpy
from mathutils import Vector, Matrix
import numpy as np
import json
import glob
import random
import shutil
import mathutils
import cv2
"""=============== BLENDER ==============="""
IMPORT_FUNCTIONS: Dict[str, Callable] = {
"obj": bpy.ops.import_scene.obj,
"glb": bpy.ops.import_scene.gltf,
"gltf": bpy.ops.import_scene.gltf,
"usd": bpy.ops.import_scene.usd,
"fbx": bpy.ops.import_scene.fbx,
"stl": bpy.ops.import_mesh.stl,
"usda": bpy.ops.import_scene.usda,
"dae": bpy.ops.wm.collada_import,
"ply": bpy.ops.import_mesh.ply,
"abc": bpy.ops.wm.alembic_import,
"blend": bpy.ops.wm.append,
}
EXT = {
'PNG': 'png',
'JPEG': 'jpg',
'OPEN_EXR': 'exr',
'TIFF': 'tiff',
'BMP': 'bmp',
'HDR': 'hdr',
'TARGA': 'tga'
}
PRIMES = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53]
def radical_inverse(base, n):
val = 0
inv_base = 1.0 / base
inv_base_n = inv_base
while n > 0:
digit = n % base
val += digit * inv_base_n
n //= base
inv_base_n *= inv_base
return val
def halton_sequence(dim, n):
return [radical_inverse(PRIMES[dim], n) for dim in range(dim)]
def hammersley_sequence(dim, n, num_samples):
return [n / num_samples] + halton_sequence(dim - 1, n)
def sphere_hammersley_sequence(n, num_samples, offset=(0, 0)):
u, v = hammersley_sequence(2, n, num_samples)
u += offset[0] / num_samples
v += offset[1]
u = 2 * u if u < 0.25 else 2 / 3 * u + 1 / 3
theta = np.arccos(1 - 2 * u) - np.pi / 2
phi = v * 2 * np.pi
return [phi, theta]
def trellis_cond_camera_sequence(num_cond_views):
yaws = []
pitchs = []
offset = (np.random.rand(), np.random.rand())
for i in range(num_cond_views):
y, p = sphere_hammersley_sequence(i, num_cond_views, offset)
yaws.append(y)
pitchs.append(p)
fov_min, fov_max = 10, 70
radius_min = np.sqrt(3) / 2 / np.sin(fov_max / 360 * np.pi)
radius_max = np.sqrt(3) / 2 / np.sin(fov_min / 360 * np.pi)
k_min = 1 / radius_max**2
k_max = 1 / radius_min**2
ks = np.random.uniform(k_min, k_max, (1000000,))
radius = [1 / np.sqrt(k) for k in ks]
fov = [2 * np.arcsin(np.sqrt(3) / 2 / r) for r in radius]
views = [{'hangle': y, 'vangle': p, 'cam_dis': r, 'fov': f, 'proj_type': 0} \
for y, p, r, f in zip(yaws, pitchs, radius, fov)]
return views
def orthogonal_camera_sequence():
yaws = [-0.5 * np.pi, 0, 0.5 * np.pi, np.pi, -0.5 * np.pi, -0.5 * np.pi]
pitchs = [0, 0, 0, 0, 0.5 * np.pi, -0.5 * np.pi]
radius = [1.5 for i in range(6)]
fov = [1.5 * np.arcsin(np.sqrt(3) / 2 / r) for r in radius]
views = [{'hangle': y, 'vangle': p, 'cam_dis': r, 'fov': f, 'proj_type': 1} \
for y, p, r, f in zip(yaws, pitchs, radius, fov)]
return views
def switch_to_mr_render(render_base_color, output_nodes):
bpy.context.scene.view_settings.view_transform = 'Raw'
bpy.context.scene.use_nodes = True
tree = bpy.context.scene.node_tree
links = tree.links
for i in range(len(output_nodes)):
if i + 1 != len(output_nodes):
for l in output_nodes[i][1].links:
links.remove(l)
else:
links.new(output_nodes[i][0], output_nodes[i][1])
for material in bpy.data.materials:
if not material.use_nodes:
continue
bsdf_node = None
output_node = None
node_tree = material.node_tree
links = material.node_tree.links
nodes = node_tree.nodes
for node in node_tree.nodes:
# Check if the node is a BSDF node
if node.type == 'BSDF_PRINCIPLED':
bsdf_node = node
if node.type == 'OUTPUT_MATERIAL':
output_node = node
if bsdf_node is None or output_node is None:
continue
#bsdf_node.inputs['Emission'].default_value = 0
bsdf_node.inputs['Emission Strength'].default_value = 0
mr_node = None
bc_node = None
for node in node_tree.nodes:
# Check if the node is a BSDF node
if node.name == 'COMBINE_METALLIC_ROUGHNESS':
mr_node = node
if node.name == 'COMBINE_BASE_COLOR':
bc_node = node
if mr_node is None:
combine_rgb_node = nodes.new('ShaderNodeCombineColor')
#combine_rgb_node.name = 'COMBINE_METALLIC_ROUGHNESS'
# Optionally, set the RGB values
combine_rgb_node.inputs['Red'].default_value = 1.0
combine_rgb_node.inputs['Green'].default_value = 0.5
combine_rgb_node.inputs['Blue'].default_value = 0.0
metallic_input = bsdf_node.inputs["Metallic"]
if metallic_input.links:
source_endpoint = metallic_input.links[0].from_socket
links.new(source_endpoint, combine_rgb_node.inputs['Blue'])
roughness_input = bsdf_node.inputs['Roughness']
if roughness_input.links:
source_endpoint = roughness_input.links[0].from_socket
links.new(source_endpoint, combine_rgb_node.inputs['Green'])
emission_shader = nodes.new("ShaderNodeEmission")
emission_shader.inputs["Strength"].default_value = 1
links.new(combine_rgb_node.outputs["Color"], emission_shader.inputs["Color"])
mix_shader = nodes.new("ShaderNodeMixShader")
mix_shader.name = 'COMBINE_METALLIC_ROUGHNESS'
links.new(bsdf_node.outputs["BSDF"], mix_shader.inputs[1])
links.new(emission_shader.outputs["Emission"], mix_shader.inputs[2])
mr_node = mix_shader
mix_shader_bc = nodes.new("ShaderNodeMixShader")
mix_shader_bc.name = 'COMBINE_BASE_COLOR'
if len(bsdf_node.inputs['Base Color'].links) > 0:
socket = bsdf_node.inputs['Base Color'].links[0].from_socket
gamma_node = node_tree.nodes.new(type='ShaderNodeGamma')
gamma_node.inputs[1].default_value = 0.454
node_tree.links.new(socket, gamma_node.inputs[0])
node_tree.links.new(gamma_node.outputs[0], mix_shader_bc.inputs[1])
links.new(mix_shader.outputs["Shader"], mix_shader_bc.inputs[2])
bc_node = mix_shader_bc
for l in output_node.inputs['Surface'].links:
links.remove(l)
links.new(mix_shader_bc.outputs["Shader"], output_node.inputs["Surface"])
mr_node.inputs["Fac"].default_value = 1.0
if render_base_color:
bc_node.inputs['Fac'].default_value = 0.0
else:
bc_node.inputs['Fac'].default_value = 1.0
def switch_to_color_render(output_nodes):
bpy.context.scene.view_settings.view_transform = 'Standard'
bpy.context.scene.use_nodes = True
tree = bpy.context.scene.node_tree
links = tree.links
for i in range(len(output_nodes)):
if i + 1 == len(output_nodes):
for l in output_nodes[i][1].links:
links.remove(l)
else:
links.new(output_nodes[i][0], output_nodes[i][1])
for material in bpy.data.materials:
if not material.use_nodes:
continue
node_tree = material.node_tree
links = material.node_tree.links
nodes = node_tree.nodes
mr_node = None
bc_node = None
for node in node_tree.nodes:
if node.name == 'COMBINE_METALLIC_ROUGHNESS':
mr_node = node
if node.name == 'COMBINE_BASE_COLOR':
bc_node = node
if mr_node is not None and bc_node is not None:
mr_node.inputs["Fac"].default_value = 0.0
if len(bc_node.inputs[1].links) > 0:
try:
node = bc_node.inputs[1].links[0].from_socket.node
node.image.colorspace_settings.name = 'sRGB'
except:
pass
# def ConvertNormalMap(input_exr, output_jpg):
# import OpenEXR
# import Imath
# file = OpenEXR.InputFile(input_exr)
# channels = file.header()['channels'].keys()
# # Get the image data
# data_window = file.header()['dataWindow']
# width = data_window.max.x - data_window.min.x + 1
# height = data_window.max.y - data_window.min.y + 1
# # Read the X, Y, and Z channels as 32-bit floats
# x_channel = np.frombuffer(file.channel('X', Imath.PixelType(Imath.PixelType.FLOAT)), dtype=np.float32)
# y_channel = np.frombuffer(file.channel('Y', Imath.PixelType(Imath.PixelType.FLOAT)), dtype=np.float32)
# z_channel = np.frombuffer(file.channel('Z', Imath.PixelType(Imath.PixelType.FLOAT)), dtype=np.float32)
# # Reshape the channels into 2D arrays
# x_channel = x_channel.reshape((height, width))
# y_channel = y_channel.reshape((height, width))
# z_channel = z_channel.reshape((height, width))
# # Stack the channels to create a 3D array
# normal = np.stack((x_channel, y_channel, z_channel), axis=-1)
# normal = ((normal * 0.5 + 0.5) * 255).astype('uint8')
# cv2.imwrite(output_jpg, normal)
def ConvertNormalMap(input_exr, output_jpg):
# Read EXR file with OpenCV (returns float32 image)
exr_img = cv2.imread(input_exr, cv2.IMREAD_UNCHANGED)
if exr_img is None:
raise RuntimeError(f"Failed to load EXR file: {input_exr}")
print(f"EXR shape: {exr_img.shape}, dtype: {exr_img.dtype}")
normal = ((exr_img * 0.5 + 0.5) * 255).clip(0, 255).astype(np.uint8)
cv2.imwrite(output_jpg, normal)
print(f"Saved normal map to {output_jpg}")
gidx = 0
def ConvertDepthMap(input_exr, output_png):
import bpy
# cam = bpy.data.objects.get('Camera')
cams = [obj for obj in bpy.data.objects if obj.type == 'CAMERA']
print("All cameras in scene:")
if not cams:
raise RuntimeError("No camera objects found in the scene")
for c in cams:
print(f" {c.name} - type: {c.type}")
cam = cams[0]
print('cam', cam)
print('cam.type', cam.type) # should be 'CAMERA'
print('cam_data', cam.data) # should not be None
print(f"Using camera: {cam.name}")
cam_data = cam.data
exr_img = cv2.imread(input_exr, cv2.IMREAD_UNCHANGED)
if exr_img is None:
raise RuntimeError(f"Failed to load EXR file: {input_exr}")
print(f"EXR shape: {exr_img.shape}, dtype: {exr_img.dtype}")
depth_channel = exr_img[:, :, 0] if exr_img.ndim == 3 else exr_img
# filter
depth_channel = depth_channel.copy()
depth_channel[depth_channel > 1e9] = 0
extrinsic_matrix = np.array(cam.matrix_world.copy())
scene = bpy.context.scene
render = scene.render
cam_data = cam.data
resolution_x = render.resolution_x * render.pixel_aspect_x
resolution_y = render.resolution_y * render.pixel_aspect_y
cx = resolution_x / 2.0
cy = resolution_y / 2.0
if cam_data.type == 'ORTHO':
aspect_ratio = render.resolution_x / render.resolution_y
ortho_scale = cam_data.ortho_scale
near = cam_data.clip_start
far = cam_data.clip_end
left = -ortho_scale / 2
right = ortho_scale / 2
top = (ortho_scale / 2) / aspect_ratio
bottom = -top
proj_matrix = np.array((
(2/(right-left), 0, 0, -(right+left)/(right-left)),
(0, 2/(top-bottom), 0, -(top+bottom)/(top-bottom)),
(0, 0, -2/(far-near), -(far+near)/(far-near)),
(0, 0, 0, 1)
))
else:
if cam_data.sensor_fit == 'VERTICAL':
sensor_size = cam_data.sensor_height
fit = 'VERTICAL'
else:
sensor_size = cam_data.sensor_width
fit = 'HORIZONTAL'
focal_length = cam_data.lens
if fit == 'HORIZONTAL':
scale = resolution_x / sensor_size
else:
scale = resolution_y / sensor_size
fx = focal_length * scale
fy = focal_length * scale
K = np.array([
[fx, 0, cx],
[0, fy, cy],
[0, 0, 1]
])
mask = (depth_channel.reshape(-1) == 0)
jj, ii = np.meshgrid(np.arange(resolution_x), np.arange(resolution_y))
jj = jj + 0.5
ii = ii + 0.5
if cam_data.type == 'ORTHO':
cam_pos = np.stack((
(jj - cx) * (1.0 / (resolution_x - 1) * ortho_scale),
(ii - cy) * (1.0 / (resolution_y - 1) * ortho_scale),
depth_channel
), axis=-1)
else:
image_pos = np.stack((jj * depth_channel, ii * depth_channel, depth_channel), axis=-1)
cam_pos = image_pos @ np.linalg.inv(K).T
cam_pos[..., 1:] = -cam_pos[..., 1:]
world_pos = cam_pos @ extrinsic_matrix[:3, :3].T + extrinsic_matrix[:3, 3].reshape(1, 1, 3)
world_pos = world_pos.reshape(-1, 3)
world_pos[mask] = 0
world_pos = world_pos.reshape(cam_pos.shape)
world_pos = np.stack((world_pos[..., 0], world_pos[..., 2], -world_pos[..., 1]), axis=-1)
img_out = np.clip((0.5 + world_pos) * 255, 0, 255).astype('uint8')
cv2.imwrite(output_png, img_out)
print(f"Saved depth map to {output_png}")
def init_render(engine='CYCLES', resolution=512, geo_mode=False):
bpy.context.scene.render.engine = engine
bpy.context.scene.render.resolution_x = resolution
bpy.context.scene.render.resolution_y = resolution
bpy.context.scene.render.resolution_percentage = 100
bpy.context.scene.render.image_settings.file_format = 'PNG'
bpy.context.scene.render.image_settings.color_mode = 'RGBA'
bpy.context.scene.render.film_transparent = True
bpy.context.scene.cycles.device = 'GPU'
#bpy.context.scene.cycles.samples = 128 if not geo_mode else 1
bpy.context.scene.cycles.filter_type = 'BOX'
bpy.context.scene.cycles.filter_width = 1
bpy.context.scene.cycles.diffuse_bounces = 1
bpy.context.scene.cycles.glossy_bounces = 1
# bpy.context.scene.cycles.transparent_max_bounces = 3 if not geo_mode else 0
# bpy.context.scene.cycles.transmission_bounces = 3 if not geo_mode else 1
bpy.context.scene.cycles.use_denoising = True
bpy.context.preferences.addons['cycles'].preferences.get_devices()
# bpy.context.preferences.addons['cycles'].preferences.compute_device_type = 'CUDA'
def init_nodes(save_depth=False, save_normal=False, save_albedo=False, save_mr = False, save_mist=False):
if not any([save_depth, save_normal, save_albedo, save_mist]):
return {}, {}, []
outputs = {}
spec_nodes = {}
composite_nodes = []
bpy.context.scene.use_nodes = True
bpy.context.scene.view_layers['ViewLayer'].use_pass_z = save_depth
bpy.context.scene.view_layers['ViewLayer'].use_pass_normal = save_normal
bpy.context.scene.view_layers['ViewLayer'].use_pass_diffuse_color = save_albedo
bpy.context.scene.view_layers['ViewLayer'].use_pass_mist = save_mist
nodes = bpy.context.scene.node_tree.nodes
links = bpy.context.scene.node_tree.links
for n in nodes:
nodes.remove(n)
render_layers = nodes.new('CompositorNodeRLayers')
if save_depth:
depth_file_output = nodes.new('CompositorNodeOutputFile')
depth_file_output.base_path = ''
depth_file_output.file_slots[0].use_node_format = True
depth_file_output.format.file_format = "OPEN_EXR"
links.new(render_layers.outputs['Depth'], depth_file_output.inputs[0])
outputs['depth'] = depth_file_output
composite_nodes.append((render_layers.outputs['Depth'], depth_file_output.inputs[0]))
if save_normal:
normal_file_output = nodes.new('CompositorNodeOutputFile')
normal_file_output.base_path = ''
normal_file_output.file_slots[0].use_node_format = True
normal_file_output.format.file_format = 'OPEN_EXR'
links.new(render_layers.outputs['Normal'], normal_file_output.inputs[0])
outputs['normal'] = normal_file_output
composite_nodes.append((render_layers.outputs['Normal'], normal_file_output.inputs[0]))
if save_albedo:
albedo_file_output = nodes.new('CompositorNodeOutputFile')
albedo_file_output.base_path = ''
albedo_file_output.file_slots[0].use_node_format = True
albedo_file_output.format.file_format = 'PNG'
albedo_file_output.format.color_mode = 'RGBA'
albedo_file_output.format.color_depth = '8'
alpha_albedo = nodes.new('CompositorNodeSetAlpha')
links.new(render_layers.outputs['DiffCol'], alpha_albedo.inputs['Image'])
links.new(render_layers.outputs['Alpha'], alpha_albedo.inputs['Alpha'])
links.new(alpha_albedo.outputs['Image'], albedo_file_output.inputs[0])
outputs['albedo'] = albedo_file_output
#composite_nodes.append((alpha_albedo.outputs['Image'], albedo_file_output.inputs[0]))
if save_mr:
mr_file_output = tree.nodes.new(type='CompositorNodeOutputFile')
mr_file_output.base_path = ''
mr_file_output.file_slots[0].use_node_format = True
mr_file_output.format.file_format = 'OPEN_EXR'
links.new(render_layers.outputs['Image'], mr_file_output.inputs[0])
outputs['mr'] = mr_file_output
composite_nodes.append((render_layers.outputs['Image'], mr_file_output.inputs[0]))
if save_mist:
bpy.data.worlds['World'].mist_settings.start = 0
bpy.data.worlds['World'].mist_settings.depth = 10
mist_file_output = nodes.new('CompositorNodeOutputFile')
mist_file_output.base_path = ''
mist_file_output.file_slots[0].use_node_format = True
mist_file_output.format.file_format = 'PNG'
mist_file_output.format.color_mode = 'BW'
mist_file_output.format.color_depth = '16'
links.new(render_layers.outputs['Mist'], mist_file_output.inputs[0])
outputs['mist'] = mist_file_output
composite_nodes.append((render_layers.outputs['Mist'], mist_file_output.inputs[0]))
return outputs, spec_nodes, composite_nodes
def init_scene() -> None:
"""Resets the scene to a clean state.
Returns:
None
"""
# delete everything
for obj in bpy.data.objects:
bpy.data.objects.remove(obj, do_unlink=True)
# delete all the materials
for material in bpy.data.materials:
bpy.data.materials.remove(material, do_unlink=True)
# delete all the textures
for texture in bpy.data.textures:
bpy.data.textures.remove(texture, do_unlink=True)
# delete all the images
for image in bpy.data.images:
bpy.data.images.remove(image, do_unlink=True)
def init_camera():
cam = bpy.data.objects.new('Camera', bpy.data.cameras.new('Camera'))
bpy.context.collection.objects.link(cam)
bpy.context.scene.camera = cam
cam.data.sensor_height = cam.data.sensor_width = 32
cam_constraint = cam.constraints.new(type='TRACK_TO')
cam_constraint.track_axis = 'TRACK_NEGATIVE_Z'
cam_constraint.up_axis = 'UP_Y'
cam_empty = bpy.data.objects.new("Empty", None)
cam_empty.location = (0, 0, 0)
bpy.context.scene.collection.objects.link(cam_empty)
cam_constraint.target = cam_empty
return cam
def init_lighting():
# Clear existing lights
bpy.ops.object.select_all(action="DESELECT")
bpy.ops.object.select_by_type(type="LIGHT")
bpy.ops.object.delete()
# Create key light
default_light = bpy.data.objects.new("Default_Light", bpy.data.lights.new("Default_Light", type="POINT"))
bpy.context.collection.objects.link(default_light)
default_light.data.energy = 1000
default_light.location = (4, 1, 6)
default_light.rotation_euler = (0, 0, 0)
# create top light
top_light = bpy.data.objects.new("Top_Light", bpy.data.lights.new("Top_Light", type="AREA"))
bpy.context.collection.objects.link(top_light)
top_light.data.energy = 10000
top_light.location = (0, 0, 10)
top_light.scale = (100, 100, 100)
# create bottom light
bottom_light = bpy.data.objects.new("Bottom_Light", bpy.data.lights.new("Bottom_Light", type="AREA"))
bpy.context.collection.objects.link(bottom_light)
bottom_light.data.energy = 1000
bottom_light.location = (0, 0, -10)
bottom_light.rotation_euler = (0, 0, 0)
return {
"default_light": default_light,
"top_light": top_light,
"bottom_light": bottom_light
}
def load_object(object_path: str) -> None:
"""Loads a model with a supported file extension into the scene.
Args:
object_path (str): Path to the model file.
Raises:
ValueError: If the file extension is not supported.
Returns:
None
"""
file_extension = object_path.split(".")[-1].lower()
if file_extension is None:
raise ValueError(f"Unsupported file type: {object_path}")
if file_extension == "usdz":
# install usdz io package
dirname = os.path.dirname(os.path.realpath(__file__))
usdz_package = os.path.join(dirname, "io_scene_usdz.zip")
bpy.ops.preferences.addon_install(filepath=usdz_package)
# enable it
addon_name = "io_scene_usdz"
bpy.ops.preferences.addon_enable(module=addon_name)
# import the usdz
from io_scene_usdz.import_usdz import import_usdz
import_usdz(context, filepath=object_path, materials=True, animations=True)
return None
# load from existing import functions
import_function = IMPORT_FUNCTIONS[file_extension]
print(f"Loading object from {object_path}")
if file_extension == "blend":
import_function(directory=object_path, link=False)
elif file_extension in {"glb", "gltf"}:
import_function(filepath=object_path, merge_vertices=True, import_shading='NORMALS')
else:
import_function(filepath=object_path)
def delete_invisible_objects() -> None:
"""Deletes all invisible objects in the scene.
Returns:
None
"""
# bpy.ops.object.mode_set(mode="OBJECT")
bpy.ops.object.select_all(action="DESELECT")
for obj in bpy.context.scene.objects:
if obj.hide_viewport or obj.hide_render:
obj.hide_viewport = False
obj.hide_render = False
obj.hide_select = False
obj.select_set(True)
bpy.ops.object.delete()
# Delete invisible collections
invisible_collections = [col for col in bpy.data.collections if col.hide_viewport]
for col in invisible_collections:
bpy.data.collections.remove(col)
def split_mesh_normal():
bpy.ops.object.select_all(action="DESELECT")
objs = [obj for obj in bpy.context.scene.objects if obj.type == "MESH"]
bpy.context.view_layer.objects.active = objs[0]
for obj in objs:
obj.select_set(True)
bpy.ops.object.mode_set(mode="EDIT")
bpy.ops.mesh.select_all(action='SELECT')
bpy.ops.mesh.split_normals()
bpy.ops.object.mode_set(mode='OBJECT')
bpy.ops.object.select_all(action="DESELECT")
def delete_custom_normals():
for this_obj in bpy.data.objects:
if this_obj.type == "MESH":
bpy.context.view_layer.objects.active = this_obj
bpy.ops.mesh.customdata_custom_splitnormals_clear()
def override_material():
new_mat = bpy.data.materials.new(name="Override0123456789")
new_mat.use_nodes = True
new_mat.node_tree.nodes.clear()
bsdf = new_mat.node_tree.nodes.new('ShaderNodeBsdfDiffuse')
bsdf.inputs[0].default_value = (0.5, 0.5, 0.5, 1)
bsdf.inputs[1].default_value = 1
output = new_mat.node_tree.nodes.new('ShaderNodeOutputMaterial')
new_mat.node_tree.links.new(bsdf.outputs['BSDF'], output.inputs['Surface'])
bpy.context.scene.view_layers['ViewLayer'].material_override = new_mat
def unhide_all_objects() -> None:
"""Unhides all objects in the scene.
Returns:
None
"""
for obj in bpy.context.scene.objects:
obj.hide_set(False)
def convert_to_meshes() -> None:
"""Converts all objects in the scene to meshes.
Returns:
None
"""
bpy.ops.object.select_all(action="DESELECT")
bpy.context.view_layer.objects.active = [obj for obj in bpy.context.scene.objects if obj.type == "MESH"][0]
for obj in bpy.context.scene.objects:
obj.select_set(True)
bpy.ops.object.convert(target="MESH")
def triangulate_meshes() -> None:
"""Triangulates all meshes in the scene.
Returns:
None
"""
bpy.ops.object.select_all(action="DESELECT")
objs = [obj for obj in bpy.context.scene.objects if obj.type == "MESH"]
bpy.context.view_layer.objects.active = objs[0]
for obj in objs:
obj.select_set(True)
bpy.ops.object.mode_set(mode="EDIT")
bpy.ops.mesh.reveal()
bpy.ops.mesh.select_all(action="SELECT")
bpy.ops.mesh.quads_convert_to_tris(quad_method="BEAUTY", ngon_method="BEAUTY")
bpy.ops.object.mode_set(mode="OBJECT")
bpy.ops.object.select_all(action="DESELECT")
def scene_bbox() -> Tuple[Vector, Vector]:
"""Returns the bounding box of the scene.
Taken from Shap-E rendering script
(https://github.com/openai/shap-e/blob/main/shap_e/rendering/blender/blender_script.py#L68-L82)
Returns:
Tuple[Vector, Vector]: The minimum and maximum coordinates of the bounding box.
"""
bbox_min = (math.inf,) * 3
bbox_max = (-math.inf,) * 3
found = False
scene_meshes = [obj for obj in bpy.context.scene.objects.values() if isinstance(obj.data, bpy.types.Mesh)]
for obj in scene_meshes:
found = True
for coord in obj.bound_box:
coord = Vector(coord)
coord = obj.matrix_world @ coord
bbox_min = tuple(min(x, y) for x, y in zip(bbox_min, coord))
bbox_max = tuple(max(x, y) for x, y in zip(bbox_max, coord))
if not found:
raise RuntimeError("no objects in scene to compute bounding box for")
return Vector(bbox_min), Vector(bbox_max)
def normalize_scene() -> Tuple[float, Vector]:
"""Normalizes the scene by scaling and translating it to fit in a unit cube centered
at the origin.
Mostly taken from the Point-E / Shap-E rendering script
(https://github.com/openai/point-e/blob/main/point_e/evals/scripts/blender_script.py#L97-L112),
but fix for multiple root objects: (see bug report here:
https://github.com/openai/shap-e/pull/60).
Returns:
Tuple[float, Vector]: The scale factor and the offset applied to the scene.
"""
scene_root_objects = [obj for obj in bpy.context.scene.objects.values() if not obj.parent]
if len(scene_root_objects) > 1:
# create an empty object to be used as a parent for all root objects
scene = bpy.data.objects.new("ParentEmpty", None)
bpy.context.scene.collection.objects.link(scene)
# parent all root objects to the empty object
for obj in scene_root_objects:
obj.parent = scene
else:
scene = scene_root_objects[0]
bbox_min, bbox_max = scene_bbox()
scale = 1 / max(bbox_max - bbox_min)
scene.scale = scene.scale * scale
# Apply scale to matrix_world.
bpy.context.view_layer.update()
bbox_min, bbox_max = scene_bbox()
offset = -(bbox_min + bbox_max) / 2
scene.matrix_world.translation += offset
bpy.ops.object.select_all(action="DESELECT")
return scale, offset
def get_transform_matrix(obj: bpy.types.Object) -> list:
pos, rt, _ = obj.matrix_world.decompose()
rt = rt.to_matrix()
matrix = []
for ii in range(3):
a = []
for jj in range(3):
a.append(rt[ii][jj])
a.append(pos[ii])
matrix.append(a)
matrix.append([0, 0, 0, 1])
return matrix
def main(arg):
os.makedirs(arg.output_folder, exist_ok=True)
if arg.geo_mode:
views = trellis_cond_camera_sequence(arg.views)
arg.save_mesh = True
else:
views = orthogonal_camera_sequence()
arg.save_albedo = True
arg.save_mr = True
arg.save_normal = True
arg.save_depth = True
arg.save_mesh = False
# Initialize context
init_render(engine=arg.engine, resolution=arg.resolution, geo_mode=arg.geo_mode)
outputs, spec_nodes, composite_nodes = init_nodes(
save_depth=arg.save_depth,
save_normal=arg.save_normal,
save_albedo=arg.save_albedo,
save_mist=arg.save_mist
)
if arg.object.endswith(".blend"):
delete_invisible_objects()
else:
init_scene()
load_object(arg.object)
if arg.split_normal:
split_mesh_normal()
# delete_custom_normals()
print('[INFO] Scene initialized.')
# normalize scene
scale, offset = normalize_scene()
print('[INFO] Scene normalized.')
# Initialize camera and lighting
cam = init_camera()
init_lighting()
print('[INFO] Camera and lighting initialized.')
# Override material
#if arg.geo_mode:
# override_material()
# Create a list of views
to_export = {
"aabb": [[-0.5, -0.5, -0.5], [0.5, 0.5, 0.5]],
"scale": scale,
"offset": [offset.x, offset.y, offset.z],
"frames": []
}
for i, view in enumerate(views):
cam.location = (
view['cam_dis'] * np.cos(view['hangle']) * np.cos(view['vangle']),
view['cam_dis'] * np.sin(view['hangle']) * np.cos(view['vangle']),
view['cam_dis'] * np.sin(view['vangle'])
)
cam.data.lens = 16 / np.tan(view['fov'] / 2)
if view['proj_type'] == 1:
cam.data.type = "ORTHO"
cam.data.ortho_scale = 1.2
bpy.context.scene.render.filepath = os.path.join(arg.output_folder, f'{i:03d}.png')
for name, output in outputs.items():
output.file_slots[0].path = os.path.join(arg.output_folder, f'{i:03d}_{name}')
# Render the scene
if not arg.geo_mode:
switch_to_mr_render(False, composite_nodes)
bpy.ops.render.render(write_still=True)
shutil.copyfile(bpy.context.scene.render.filepath,
bpy.context.scene.render.filepath.replace('.png', '_mr.png'))
switch_to_color_render(composite_nodes)
bpy.ops.render.render(write_still=True)
bpy.context.view_layer.update()
for name, output in outputs.items():
ext = EXT[output.format.file_format]
path = glob.glob(f'{output.file_slots[0].path}*.{ext}')[0]
os.rename(path, f'{output.file_slots[0].path}.{ext}')
if not arg.geo_mode:
ConvertNormalMap(os.path.join(arg.output_folder, f'{i:03d}_normal.exr'),
os.path.join(arg.output_folder, f'{i:03d}_normal.jpg'))
ConvertDepthMap(os.path.join(arg.output_folder, f'{i:03d}_depth.exr'),
os.path.join(arg.output_folder, f'{i:03d}_pos.jpg'))
os.remove(os.path.join(arg.output_folder, f'{i:03d}_normal.exr'))
os.remove(os.path.join(arg.output_folder, f'{i:03d}_depth.exr'))
# Save camera parameters
metadata = {
"file_path": f'{i:03d}.png',
"camera_angle_x": view['fov'],
'proj_type': view['proj_type'],
'azimuth': view['hangle'],
'elevation': view['vangle'],
'cam_dis': view['cam_dis'],
"transform_matrix": get_transform_matrix(cam)
}
to_export["frames"].append(metadata)
# Save the camera parameters
transform_path = os.path.join(arg.output_folder, 'transforms.json')
with open(transform_path, 'w') as f:
json.dump(to_export, f, indent=4)
if arg.save_mesh:
# triangulate meshes
unhide_all_objects()
convert_to_meshes()
triangulate_meshes()
print('[INFO] Meshes triangulated.')
# export ply mesh
bpy.ops.wm.ply_export(filepath=os.path.join(arg.output_folder, 'mesh.ply'),
export_triangulated_mesh=True, up_axis='Y',
forward_axis='NEGATIVE_Z')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Renders given obj file by rotation a camera around it.')
parser.add_argument('--views', type=int, default=24,
help='JSON string of views. Contains a list of {yaw, pitch, radius, fov} object.')
parser.add_argument('--object', type=str,
help='Path to the 3D model file to be rendered.')
parser.add_argument('--output_folder', type=str, default='/tmp',
help='The path the output will be dumped to.')
parser.add_argument('--resolution', type=int, default=512,
help='Resolution of the images.')
parser.add_argument('--engine', type=str, default='CYCLES',
help='Blender internal engine for rendering. E.g. CYCLES, BLENDER_EEVEE, ...')
parser.add_argument('--geo_mode', action='store_true',
help='Geometry mode for rendering.')
parser.add_argument('--save_depth', action='store_true',
help='Save the depth maps.')
parser.add_argument('--save_normal', action='store_true',
help='Save the normal maps.')
parser.add_argument('--save_albedo', action='store_true',
help='Save the albedo maps.')
parser.add_argument('--save_mr', action='store_true',
help='Save the MR maps.')
parser.add_argument('--save_mist', action='store_true',
help='Save the mist distance maps.')
parser.add_argument('--split_normal', action='store_true',
help='Split the normals of the mesh.')
parser.add_argument('--save_mesh', action='store_true',
help='Save the mesh as a .ply file.')
argv = sys.argv[sys.argv.index("--") + 1:]
args = parser.parse_args(argv)
main(args)
|