Spaces:
Runtime error
Runtime error
File size: 2,909 Bytes
0514ca2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# evaluation utilities
# --------------------------------------------------------
import numpy as np
import quaternion
import torch
import roma
import collections
import os
def aggregate_stats(info_str, pose_errors, angular_errors):
stats = collections.Counter()
median_pos_error = np.median(pose_errors)
median_angular_error = np.median(angular_errors)
out_str = f'{info_str}: {len(pose_errors)} images - {median_pos_error=}, {median_angular_error=}'
for trl_thr, ang_thr in [(0.1, 1), (0.25, 2), (0.5, 5), (5, 10)]:
for pose_error, angular_error in zip(pose_errors, angular_errors):
correct_for_this_threshold = (pose_error < trl_thr) and (angular_error < ang_thr)
stats[trl_thr, ang_thr] += correct_for_this_threshold
stats = {f'acc@{key[0]:g}m,{key[1]}deg': 100 * val / len(pose_errors) for key, val in stats.items()}
for metric, perf in stats.items():
out_str += f' - {metric:12s}={float(perf):.3f}'
return out_str
def get_pose_error(pr_camtoworld, gt_cam_to_world):
abs_transl_error = torch.linalg.norm(torch.tensor(pr_camtoworld[:3, 3]) - torch.tensor(gt_cam_to_world[:3, 3]))
abs_angular_error = roma.rotmat_geodesic_distance(torch.tensor(pr_camtoworld[:3, :3]),
torch.tensor(gt_cam_to_world[:3, :3])) * 180 / np.pi
return abs_transl_error, abs_angular_error
def export_results(output_dir, xp_label, query_names, poses_pred):
if output_dir is not None:
os.makedirs(output_dir, exist_ok=True)
lines = ""
lines_ltvl = ""
for query_name, pr_querycam_to_world in zip(query_names, poses_pred):
if pr_querycam_to_world is None:
pr_world_to_querycam = np.eye(4)
else:
pr_world_to_querycam = np.linalg.inv(pr_querycam_to_world)
query_shortname = os.path.basename(query_name)
pr_world_to_querycam_q = quaternion.from_rotation_matrix(pr_world_to_querycam[:3, :3])
pr_world_to_querycam_t = pr_world_to_querycam[:3, 3]
line_pose = quaternion.as_float_array(pr_world_to_querycam_q).tolist() + \
pr_world_to_querycam_t.flatten().tolist()
line_content = [query_name] + line_pose
lines += ' '.join(str(v) for v in line_content) + '\n'
line_content_ltvl = [query_shortname] + line_pose
lines_ltvl += ' '.join(str(v) for v in line_content_ltvl) + '\n'
with open(os.path.join(output_dir, xp_label + '_results.txt'), 'wt') as f:
f.write(lines)
with open(os.path.join(output_dir, xp_label + '_ltvl.txt'), 'wt') as f:
f.write(lines_ltvl)
|