File size: 5,373 Bytes
0514ca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Preprocessing code for the BlendedMVS dataset
# dataset at https://github.com/YoYo000/BlendedMVS
# 1) Download BlendedMVS.zip
# 2) Download BlendedMVS+.zip
# 3) Download BlendedMVS++.zip
# 4) Unzip everything in the same /path/to/tmp/blendedMVS/ directory
# 5) python datasets_preprocess/preprocess_blendedMVS.py --blendedmvs_dir /path/to/tmp/blendedMVS/
# --------------------------------------------------------
import os
import os.path as osp
import re
from tqdm import tqdm
import numpy as np
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
import cv2

import path_to_root  # noqa
from dust3r.utils.parallel import parallel_threads
from dust3r.datasets.utils import cropping  # noqa


def get_parser():
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('--blendedmvs_dir', required=True)
    parser.add_argument('--precomputed_pairs', required=True)
    parser.add_argument('--output_dir', default='data/blendedmvs_processed')
    return parser


def main(db_root, pairs_path, output_dir):
    print('>> Listing all sequences')
    sequences = [f for f in os.listdir(db_root) if len(f) == 24]
    # should find 502 scenes
    assert sequences, f'did not found any sequences at {db_root}'
    print(f'   (found {len(sequences)} sequences)')

    for i, seq in enumerate(tqdm(sequences)):
        out_dir = osp.join(output_dir, seq)
        os.makedirs(out_dir, exist_ok=True)

        # generate the crops
        root = osp.join(db_root, seq)
        cam_dir = osp.join(root, 'cams')
        func_args = [(root, f[:-8], out_dir) for f in os.listdir(cam_dir) if not f.startswith('pair')]
        parallel_threads(load_crop_and_save, func_args, star_args=True, leave=False)

    # verify that all pairs are there
    pairs = np.load(pairs_path)
    for seqh, seql, img1, img2, score in tqdm(pairs):
        for view_index in [img1, img2]:
            impath = osp.join(output_dir, f"{seqh:08x}{seql:016x}", f"{view_index:08n}.jpg")
            assert osp.isfile(impath), f'missing image at {impath=}'

    print(f'>> Done, saved everything in {output_dir}/')


def load_crop_and_save(root, img, out_dir):
    if osp.isfile(osp.join(out_dir, img + '.npz')):
        return  # already done

    # load everything
    intrinsics_in, R_camin2world, t_camin2world = _load_pose(osp.join(root, 'cams', img + '_cam.txt'))
    color_image_in = cv2.cvtColor(cv2.imread(osp.join(root, 'blended_images', img +
                                  '.jpg'), cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)
    depthmap_in = load_pfm_file(osp.join(root, 'rendered_depth_maps', img + '.pfm'))

    # do the crop
    H, W = color_image_in.shape[:2]
    assert H * 4 == W * 3
    image, depthmap, intrinsics_out, R_in2out = _crop_image(intrinsics_in, color_image_in, depthmap_in, (512, 384))

    # write everything
    image.save(osp.join(out_dir, img + '.jpg'), quality=80)
    cv2.imwrite(osp.join(out_dir, img + '.exr'), depthmap)

    # New camera parameters
    R_camout2world = R_camin2world @ R_in2out.T
    t_camout2world = t_camin2world
    np.savez(osp.join(out_dir, img + '.npz'), intrinsics=intrinsics_out,
             R_cam2world=R_camout2world, t_cam2world=t_camout2world)


def _crop_image(intrinsics_in, color_image_in, depthmap_in, resolution_out=(800, 800)):
    image, depthmap, intrinsics_out = cropping.rescale_image_depthmap(
        color_image_in, depthmap_in, intrinsics_in, resolution_out)
    R_in2out = np.eye(3)
    return image, depthmap, intrinsics_out, R_in2out


def _load_pose(path, ret_44=False):
    f = open(path)
    RT = np.loadtxt(f, skiprows=1, max_rows=4, dtype=np.float32)
    assert RT.shape == (4, 4)
    RT = np.linalg.inv(RT)  # world2cam to cam2world

    K = np.loadtxt(f, skiprows=2, max_rows=3, dtype=np.float32)
    assert K.shape == (3, 3)

    if ret_44:
        return K, RT
    return K, RT[:3, :3], RT[:3, 3]  # , depth_uint8_to_f32


def load_pfm_file(file_path):
    with open(file_path, 'rb') as file:
        header = file.readline().decode('UTF-8').strip()

        if header == 'PF':
            is_color = True
        elif header == 'Pf':
            is_color = False
        else:
            raise ValueError('The provided file is not a valid PFM file.')

        dimensions = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('UTF-8'))
        if dimensions:
            img_width, img_height = map(int, dimensions.groups())
        else:
            raise ValueError('Invalid PFM header format.')

        endian_scale = float(file.readline().decode('UTF-8').strip())
        if endian_scale < 0:
            dtype = '<f'  # little-endian
        else:
            dtype = '>f'  # big-endian

        data_buffer = file.read()
        img_data = np.frombuffer(data_buffer, dtype=dtype)

        if is_color:
            img_data = np.reshape(img_data, (img_height, img_width, 3))
        else:
            img_data = np.reshape(img_data, (img_height, img_width))

        img_data = cv2.flip(img_data, 0)

    return img_data


if __name__ == '__main__':
    parser = get_parser()
    args = parser.parse_args()
    main(args.blendedmvs_dir, args.precomputed_pairs, args.output_dir)