File size: 6,848 Bytes
0514ca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).


# --------------------------------------------------------
# Position embedding utils
# --------------------------------------------------------



import numpy as np

import torch

# --------------------------------------------------------
# 2D sine-cosine position embedding
# References:
# MAE: https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
# Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py
# MoCo v3: https://github.com/facebookresearch/moco-v3
# --------------------------------------------------------
def get_2d_sincos_pos_embed(embed_dim, grid_size, n_cls_token=0):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [n_cls_token+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    grid_h = np.arange(grid_size, dtype=np.float32)
    grid_w = np.arange(grid_size, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size, grid_size])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if n_cls_token>0:
        pos_embed = np.concatenate([np.zeros([n_cls_token, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=float)
    omega /= embed_dim / 2.
    omega = 1. / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum('m,d->md', pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out) # (M, D/2)
    emb_cos = np.cos(out) # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


# --------------------------------------------------------
# Interpolate position embeddings for high-resolution
# References:
# MAE: https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
# DeiT: https://github.com/facebookresearch/deit
# --------------------------------------------------------
def interpolate_pos_embed(model, checkpoint_model):
    if 'pos_embed' in checkpoint_model:
        pos_embed_checkpoint = checkpoint_model['pos_embed']
        embedding_size = pos_embed_checkpoint.shape[-1]
        num_patches = model.patch_embed.num_patches
        num_extra_tokens = model.pos_embed.shape[-2] - num_patches
        # height (== width) for the checkpoint position embedding
        orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
        # height (== width) for the new position embedding
        new_size = int(num_patches ** 0.5)
        # class_token and dist_token are kept unchanged
        if orig_size != new_size:
            print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
            pos_tokens = torch.nn.functional.interpolate(
                pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
            new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
            checkpoint_model['pos_embed'] = new_pos_embed


#----------------------------------------------------------
# RoPE2D: RoPE implementation in 2D
#----------------------------------------------------------

try:
    from models.curope import cuRoPE2D
    RoPE2D = cuRoPE2D
except ImportError:
    print('Warning, cannot find cuda-compiled version of RoPE2D, using a slow pytorch version instead')

    class RoPE2D(torch.nn.Module):
        
        def __init__(self, freq=100.0, F0=1.0):
            super().__init__()
            self.base = freq 
            self.F0 = F0
            self.cache = {}

        def get_cos_sin(self, D, seq_len, device, dtype):
            if (D,seq_len,device,dtype) not in self.cache:
                inv_freq = 1.0 / (self.base ** (torch.arange(0, D, 2).float().to(device) / D))
                t = torch.arange(seq_len, device=device, dtype=inv_freq.dtype)
                freqs = torch.einsum("i,j->ij", t, inv_freq).to(dtype)
                freqs = torch.cat((freqs, freqs), dim=-1)
                cos = freqs.cos() # (Seq, Dim)
                sin = freqs.sin()
                self.cache[D,seq_len,device,dtype] = (cos,sin)
            return self.cache[D,seq_len,device,dtype]
            
        @staticmethod
        def rotate_half(x):
            x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
            return torch.cat((-x2, x1), dim=-1)
            
        def apply_rope1d(self, tokens, pos1d, cos, sin):
            assert pos1d.ndim==2
            cos = torch.nn.functional.embedding(pos1d, cos)[:, None, :, :]
            sin = torch.nn.functional.embedding(pos1d, sin)[:, None, :, :]
            return (tokens * cos) + (self.rotate_half(tokens) * sin)
            
        def forward(self, tokens, positions):
            """
            input:
                * tokens: batch_size x nheads x ntokens x dim
                * positions: batch_size x ntokens x 2 (y and x position of each token)
            output:
                * tokens after appplying RoPE2D (batch_size x nheads x ntokens x dim)
            """
            assert tokens.size(3)%2==0, "number of dimensions should be a multiple of two"
            D = tokens.size(3) // 2
            assert positions.ndim==3 and positions.shape[-1] == 2 # Batch, Seq, 2
            cos, sin = self.get_cos_sin(D, int(positions.max())+1, tokens.device, tokens.dtype)
            # split features into two along the feature dimension, and apply rope1d on each half
            y, x = tokens.chunk(2, dim=-1)
            y = self.apply_rope1d(y, positions[:,:,0], cos, sin)
            x = self.apply_rope1d(x, positions[:,:,1], cos, sin)
            tokens = torch.cat((y, x), dim=-1)
            return tokens