File size: 21,598 Bytes
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
# Adapted from OpenSora

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# OpenSora: https://github.com/hpcaitech/Open-Sora
# --------------------------------------------------------


import numbers
import os
import re

import numpy as np
import requests
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
from torchvision.datasets.folder import IMG_EXTENSIONS, pil_loader
from torchvision.io import write_video
from torchvision.utils import save_image

IMG_FPS = 120
VID_EXTENSIONS = (".mp4", ".avi", ".mov", ".mkv")

regex = re.compile(
    r"^(?:http|ftp)s?://"  # http:// or https://
    r"(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|"  # domain...
    r"localhost|"  # localhost...
    r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})"  # ...or ip
    r"(?::\d+)?"  # optional port
    r"(?:/?|[/?]\S+)$",
    re.IGNORECASE,
)

# H:W
ASPECT_RATIO_MAP = {
    "3:8": "0.38",
    "9:21": "0.43",
    "12:25": "0.48",
    "1:2": "0.50",
    "9:17": "0.53",
    "27:50": "0.54",
    "9:16": "0.56",
    "5:8": "0.62",
    "2:3": "0.67",
    "3:4": "0.75",
    "1:1": "1.00",
    "4:3": "1.33",
    "3:2": "1.50",
    "16:9": "1.78",
    "17:9": "1.89",
    "2:1": "2.00",
    "50:27": "2.08",
}


# computed from above code
# S = 8294400
ASPECT_RATIO_4K = {
    "0.38": (1764, 4704),
    "0.43": (1886, 4400),
    "0.48": (1996, 4158),
    "0.50": (2036, 4072),
    "0.53": (2096, 3960),
    "0.54": (2118, 3918),
    "0.62": (2276, 3642),
    "0.56": (2160, 3840),  # base
    "0.67": (2352, 3528),
    "0.75": (2494, 3326),
    "1.00": (2880, 2880),
    "1.33": (3326, 2494),
    "1.50": (3528, 2352),
    "1.78": (3840, 2160),
    "1.89": (3958, 2096),
    "2.00": (4072, 2036),
    "2.08": (4156, 1994),
}

# S = 3686400
ASPECT_RATIO_2K = {
    "0.38": (1176, 3136),
    "0.43": (1256, 2930),
    "0.48": (1330, 2770),
    "0.50": (1358, 2716),
    "0.53": (1398, 2640),
    "0.54": (1412, 2612),
    "0.56": (1440, 2560),  # base
    "0.62": (1518, 2428),
    "0.67": (1568, 2352),
    "0.75": (1662, 2216),
    "1.00": (1920, 1920),
    "1.33": (2218, 1664),
    "1.50": (2352, 1568),
    "1.78": (2560, 1440),
    "1.89": (2638, 1396),
    "2.00": (2716, 1358),
    "2.08": (2772, 1330),
}

# S = 2073600
ASPECT_RATIO_1080P = {
    "0.38": (882, 2352),
    "0.43": (942, 2198),
    "0.48": (998, 2080),
    "0.50": (1018, 2036),
    "0.53": (1048, 1980),
    "0.54": (1058, 1958),
    "0.56": (1080, 1920),  # base
    "0.62": (1138, 1820),
    "0.67": (1176, 1764),
    "0.75": (1248, 1664),
    "1.00": (1440, 1440),
    "1.33": (1662, 1246),
    "1.50": (1764, 1176),
    "1.78": (1920, 1080),
    "1.89": (1980, 1048),
    "2.00": (2036, 1018),
    "2.08": (2078, 998),
}

# S = 921600
ASPECT_RATIO_720P = {
    "0.38": (588, 1568),
    "0.43": (628, 1466),
    "0.48": (666, 1388),
    "0.50": (678, 1356),
    "0.53": (698, 1318),
    "0.54": (706, 1306),
    "0.56": (720, 1280),  # base
    "0.62": (758, 1212),
    "0.67": (784, 1176),
    "0.75": (832, 1110),
    "1.00": (960, 960),
    "1.33": (1108, 832),
    "1.50": (1176, 784),
    "1.78": (1280, 720),
    "1.89": (1320, 698),
    "2.00": (1358, 680),
    "2.08": (1386, 666),
}

# S = 409920
ASPECT_RATIO_480P = {
    "0.38": (392, 1046),
    "0.43": (420, 980),
    "0.48": (444, 925),
    "0.50": (452, 904),
    "0.53": (466, 880),
    "0.54": (470, 870),
    "0.56": (480, 854),  # base
    "0.62": (506, 810),
    "0.67": (522, 784),
    "0.75": (554, 738),
    "1.00": (640, 640),
    "1.33": (740, 555),
    "1.50": (784, 522),
    "1.78": (854, 480),
    "1.89": (880, 466),
    "2.00": (906, 454),
    "2.08": (924, 444),
}

# S = 230400
ASPECT_RATIO_360P = {
    "0.38": (294, 784),
    "0.43": (314, 732),
    "0.48": (332, 692),
    "0.50": (340, 680),
    "0.53": (350, 662),
    "0.54": (352, 652),
    "0.56": (360, 640),  # base
    "0.62": (380, 608),
    "0.67": (392, 588),
    "0.75": (416, 554),
    "1.00": (480, 480),
    "1.33": (554, 416),
    "1.50": (588, 392),
    "1.78": (640, 360),
    "1.89": (660, 350),
    "2.00": (678, 340),
    "2.08": (692, 332),
}

# S = 102240
ASPECT_RATIO_240P = {
    "0.38": (196, 522),
    "0.43": (210, 490),
    "0.48": (222, 462),
    "0.50": (226, 452),
    "0.53": (232, 438),
    "0.54": (236, 436),
    "0.56": (240, 426),  # base
    "0.62": (252, 404),
    "0.67": (262, 393),
    "0.75": (276, 368),
    "1.00": (320, 320),
    "1.33": (370, 278),
    "1.50": (392, 262),
    "1.78": (426, 240),
    "1.89": (440, 232),
    "2.00": (452, 226),
    "2.08": (462, 222),
}

# S = 36864
ASPECT_RATIO_144P = {
    "0.38": (117, 312),
    "0.43": (125, 291),
    "0.48": (133, 277),
    "0.50": (135, 270),
    "0.53": (139, 262),
    "0.54": (141, 260),
    "0.56": (144, 256),  # base
    "0.62": (151, 241),
    "0.67": (156, 234),
    "0.75": (166, 221),
    "1.00": (192, 192),
    "1.33": (221, 165),
    "1.50": (235, 156),
    "1.78": (256, 144),
    "1.89": (263, 139),
    "2.00": (271, 135),
    "2.08": (277, 132),
}

# from PixArt
# S = 8294400
ASPECT_RATIO_2880 = {
    "0.25": (1408, 5760),
    "0.26": (1408, 5568),
    "0.27": (1408, 5376),
    "0.28": (1408, 5184),
    "0.32": (1600, 4992),
    "0.33": (1600, 4800),
    "0.34": (1600, 4672),
    "0.4": (1792, 4480),
    "0.42": (1792, 4288),
    "0.47": (1920, 4096),
    "0.49": (1920, 3904),
    "0.51": (1920, 3776),
    "0.55": (2112, 3840),
    "0.59": (2112, 3584),
    "0.68": (2304, 3392),
    "0.72": (2304, 3200),
    "0.78": (2496, 3200),
    "0.83": (2496, 3008),
    "0.89": (2688, 3008),
    "0.93": (2688, 2880),
    "1.0": (2880, 2880),
    "1.07": (2880, 2688),
    "1.12": (3008, 2688),
    "1.21": (3008, 2496),
    "1.28": (3200, 2496),
    "1.39": (3200, 2304),
    "1.47": (3392, 2304),
    "1.7": (3584, 2112),
    "1.82": (3840, 2112),
    "2.03": (3904, 1920),
    "2.13": (4096, 1920),
    "2.39": (4288, 1792),
    "2.5": (4480, 1792),
    "2.92": (4672, 1600),
    "3.0": (4800, 1600),
    "3.12": (4992, 1600),
    "3.68": (5184, 1408),
    "3.82": (5376, 1408),
    "3.95": (5568, 1408),
    "4.0": (5760, 1408),
}

# S = 4194304
ASPECT_RATIO_2048 = {
    "0.25": (1024, 4096),
    "0.26": (1024, 3968),
    "0.27": (1024, 3840),
    "0.28": (1024, 3712),
    "0.32": (1152, 3584),
    "0.33": (1152, 3456),
    "0.35": (1152, 3328),
    "0.4": (1280, 3200),
    "0.42": (1280, 3072),
    "0.48": (1408, 2944),
    "0.5": (1408, 2816),
    "0.52": (1408, 2688),
    "0.57": (1536, 2688),
    "0.6": (1536, 2560),
    "0.68": (1664, 2432),
    "0.72": (1664, 2304),
    "0.78": (1792, 2304),
    "0.82": (1792, 2176),
    "0.88": (1920, 2176),
    "0.94": (1920, 2048),
    "1.0": (2048, 2048),
    "1.07": (2048, 1920),
    "1.13": (2176, 1920),
    "1.21": (2176, 1792),
    "1.29": (2304, 1792),
    "1.38": (2304, 1664),
    "1.46": (2432, 1664),
    "1.67": (2560, 1536),
    "1.75": (2688, 1536),
    "2.0": (2816, 1408),
    "2.09": (2944, 1408),
    "2.4": (3072, 1280),
    "2.5": (3200, 1280),
    "2.89": (3328, 1152),
    "3.0": (3456, 1152),
    "3.11": (3584, 1152),
    "3.62": (3712, 1024),
    "3.75": (3840, 1024),
    "3.88": (3968, 1024),
    "4.0": (4096, 1024),
}

# S = 1048576
ASPECT_RATIO_1024 = {
    "0.25": (512, 2048),
    "0.26": (512, 1984),
    "0.27": (512, 1920),
    "0.28": (512, 1856),
    "0.32": (576, 1792),
    "0.33": (576, 1728),
    "0.35": (576, 1664),
    "0.4": (640, 1600),
    "0.42": (640, 1536),
    "0.48": (704, 1472),
    "0.5": (704, 1408),
    "0.52": (704, 1344),
    "0.57": (768, 1344),
    "0.6": (768, 1280),
    "0.68": (832, 1216),
    "0.72": (832, 1152),
    "0.78": (896, 1152),
    "0.82": (896, 1088),
    "0.88": (960, 1088),
    "0.94": (960, 1024),
    "1.0": (1024, 1024),
    "1.07": (1024, 960),
    "1.13": (1088, 960),
    "1.21": (1088, 896),
    "1.29": (1152, 896),
    "1.38": (1152, 832),
    "1.46": (1216, 832),
    "1.67": (1280, 768),
    "1.75": (1344, 768),
    "2.0": (1408, 704),
    "2.09": (1472, 704),
    "2.4": (1536, 640),
    "2.5": (1600, 640),
    "2.89": (1664, 576),
    "3.0": (1728, 576),
    "3.11": (1792, 576),
    "3.62": (1856, 512),
    "3.75": (1920, 512),
    "3.88": (1984, 512),
    "4.0": (2048, 512),
}

# S = 262144
ASPECT_RATIO_512 = {
    "0.25": (256, 1024),
    "0.26": (256, 992),
    "0.27": (256, 960),
    "0.28": (256, 928),
    "0.32": (288, 896),
    "0.33": (288, 864),
    "0.35": (288, 832),
    "0.4": (320, 800),
    "0.42": (320, 768),
    "0.48": (352, 736),
    "0.5": (352, 704),
    "0.52": (352, 672),
    "0.57": (384, 672),
    "0.6": (384, 640),
    "0.68": (416, 608),
    "0.72": (416, 576),
    "0.78": (448, 576),
    "0.82": (448, 544),
    "0.88": (480, 544),
    "0.94": (480, 512),
    "1.0": (512, 512),
    "1.07": (512, 480),
    "1.13": (544, 480),
    "1.21": (544, 448),
    "1.29": (576, 448),
    "1.38": (576, 416),
    "1.46": (608, 416),
    "1.67": (640, 384),
    "1.75": (672, 384),
    "2.0": (704, 352),
    "2.09": (736, 352),
    "2.4": (768, 320),
    "2.5": (800, 320),
    "2.89": (832, 288),
    "3.0": (864, 288),
    "3.11": (896, 288),
    "3.62": (928, 256),
    "3.75": (960, 256),
    "3.88": (992, 256),
    "4.0": (1024, 256),
}

# S = 65536
ASPECT_RATIO_256 = {
    "0.25": (128, 512),
    "0.26": (128, 496),
    "0.27": (128, 480),
    "0.28": (128, 464),
    "0.32": (144, 448),
    "0.33": (144, 432),
    "0.35": (144, 416),
    "0.4": (160, 400),
    "0.42": (160, 384),
    "0.48": (176, 368),
    "0.5": (176, 352),
    "0.52": (176, 336),
    "0.57": (192, 336),
    "0.6": (192, 320),
    "0.68": (208, 304),
    "0.72": (208, 288),
    "0.78": (224, 288),
    "0.82": (224, 272),
    "0.88": (240, 272),
    "0.94": (240, 256),
    "1.0": (256, 256),
    "1.07": (256, 240),
    "1.13": (272, 240),
    "1.21": (272, 224),
    "1.29": (288, 224),
    "1.38": (288, 208),
    "1.46": (304, 208),
    "1.67": (320, 192),
    "1.75": (336, 192),
    "2.0": (352, 176),
    "2.09": (368, 176),
    "2.4": (384, 160),
    "2.5": (400, 160),
    "2.89": (416, 144),
    "3.0": (432, 144),
    "3.11": (448, 144),
    "3.62": (464, 128),
    "3.75": (480, 128),
    "3.88": (496, 128),
    "4.0": (512, 128),
}


def get_closest_ratio(height: float, width: float, ratios: dict):
    aspect_ratio = height / width
    closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - aspect_ratio))
    return closest_ratio


ASPECT_RATIOS = {
    "144p": (36864, ASPECT_RATIO_144P),
    "256": (65536, ASPECT_RATIO_256),
    "240p": (102240, ASPECT_RATIO_240P),
    "360p": (230400, ASPECT_RATIO_360P),
    "512": (262144, ASPECT_RATIO_512),
    "480p": (409920, ASPECT_RATIO_480P),
    "720p": (921600, ASPECT_RATIO_720P),
    "1024": (1048576, ASPECT_RATIO_1024),
    "1080p": (2073600, ASPECT_RATIO_1080P),
    "2k": (3686400, ASPECT_RATIO_2K),
    "2048": (4194304, ASPECT_RATIO_2048),
    "2880": (8294400, ASPECT_RATIO_2880),
    "4k": (8294400, ASPECT_RATIO_4K),
}


def get_image_size(resolution, ar_ratio):
    ar_key = ASPECT_RATIO_MAP[ar_ratio]
    rs_dict = ASPECT_RATIOS[resolution][1]
    assert ar_key in rs_dict, f"Aspect ratio {ar_ratio} not found for resolution {resolution}"
    return rs_dict[ar_key]


NUM_FRAMES_MAP = {
    "1x": 51,
    "2x": 102,
    "4x": 204,
    "8x": 408,
    "16x": 816,
    "2s": 51,
    "4s": 102,
    "8s": 204,
    "16s": 408,
    "32s": 816,
}


def get_num_frames(num_frames):
    if num_frames in NUM_FRAMES_MAP:
        return NUM_FRAMES_MAP[num_frames]
    else:
        return int(num_frames)


def save_sample(x, save_path=None, fps=8, normalize=True, value_range=(-1, 1), force_video=False, verbose=True):
    """
    Args:
        x (Tensor): shape [C, T, H, W]
    """
    assert x.ndim == 4

    if not force_video and x.shape[1] == 1:  # T = 1: save as image
        save_path += ".png"
        x = x.squeeze(1)
        save_image([x], save_path, normalize=normalize, value_range=value_range)
    else:
        save_path += ".mp4"
        if normalize:
            low, high = value_range
            x.clamp_(min=low, max=high)
            x.sub_(low).div_(max(high - low, 1e-5))

        x = x.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 3, 0).to("cpu", torch.uint8)
        write_video(save_path, x, fps=fps, video_codec="h264")
    if verbose:
        print(f"Saved to {save_path}")
    return save_path


def is_url(url):
    return re.match(regex, url) is not None


def download_url(input_path):
    output_dir = "cache"
    os.makedirs(output_dir, exist_ok=True)
    base_name = os.path.basename(input_path)
    output_path = os.path.join(output_dir, base_name)
    img_data = requests.get(input_path).content
    with open(output_path, "wb") as handler:
        handler.write(img_data)
    print(f"URL {input_path} downloaded to {output_path}")
    return output_path


def get_transforms_video(name="center", image_size=(256, 256)):
    if name is None:
        return None
    elif name == "center":
        assert image_size[0] == image_size[1], "image_size must be square for center crop"
        transform_video = transforms.Compose(
            [
                ToTensorVideo(),  # TCHW
                # video_transforms.RandomHorizontalFlipVideo(),
                UCFCenterCropVideo(image_size[0]),
                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
            ]
        )
    elif name == "resize_crop":
        transform_video = transforms.Compose(
            [
                ToTensorVideo(),  # TCHW
                ResizeCrop(image_size),
                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
            ]
        )
    else:
        raise NotImplementedError(f"Transform {name} not implemented")
    return transform_video


def crop(clip, i, j, h, w):
    """
    Args:
        clip (torch.tensor): Video clip to be cropped. Size is (T, C, H, W)
    """
    if len(clip.size()) != 4:
        raise ValueError("clip should be a 4D tensor")
    return clip[..., i : i + h, j : j + w]


def center_crop(clip, crop_size):
    if not _is_tensor_video_clip(clip):
        raise ValueError("clip should be a 4D torch.tensor")
    h, w = clip.size(-2), clip.size(-1)
    th, tw = crop_size
    if h < th or w < tw:
        raise ValueError("height and width must be no smaller than crop_size")

    i = int(round((h - th) / 2.0))
    j = int(round((w - tw) / 2.0))
    return crop(clip, i, j, th, tw)


def resize_scale(clip, target_size, interpolation_mode):
    if len(target_size) != 2:
        raise ValueError(f"target size should be tuple (height, width), instead got {target_size}")
    H, W = clip.size(-2), clip.size(-1)
    scale_ = target_size[0] / min(H, W)
    return torch.nn.functional.interpolate(clip, scale_factor=scale_, mode=interpolation_mode, align_corners=False)


class UCFCenterCropVideo:
    """
    First scale to the specified size in equal proportion to the short edge,
    then center cropping
    """

    def __init__(
        self,
        size,
        interpolation_mode="bilinear",
    ):
        if isinstance(size, tuple):
            if len(size) != 2:
                raise ValueError(f"size should be tuple (height, width), instead got {size}")
            self.size = size
        else:
            self.size = (size, size)

        self.interpolation_mode = interpolation_mode

    def __call__(self, clip):
        """
        Args:
            clip (torch.tensor): Video clip to be cropped. Size is (T, C, H, W)
        Returns:
            torch.tensor: scale resized / center cropped video clip.
                size is (T, C, crop_size, crop_size)
        """
        clip_resize = resize_scale(clip=clip, target_size=self.size, interpolation_mode=self.interpolation_mode)
        clip_center_crop = center_crop(clip_resize, self.size)
        return clip_center_crop

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(size={self.size}, interpolation_mode={self.interpolation_mode}"


def _is_tensor_video_clip(clip):
    if not torch.is_tensor(clip):
        raise TypeError("clip should be Tensor. Got %s" % type(clip))

    if not clip.ndimension() == 4:
        raise ValueError("clip should be 4D. Got %dD" % clip.dim())

    return True


def to_tensor(clip):
    """
    Convert tensor data type from uint8 to float, divide value by 255.0 and
    permute the dimensions of clip tensor
    Args:
        clip (torch.tensor, dtype=torch.uint8): Size is (T, C, H, W)
    Return:
        clip (torch.tensor, dtype=torch.float): Size is (T, C, H, W)
    """
    _is_tensor_video_clip(clip)
    if not clip.dtype == torch.uint8:
        raise TypeError("clip tensor should have data type uint8. Got %s" % str(clip.dtype))
    # return clip.float().permute(3, 0, 1, 2) / 255.0
    return clip.float() / 255.0


class ToTensorVideo:
    """
    Convert tensor data type from uint8 to float, divide value by 255.0 and
    permute the dimensions of clip tensor
    """

    def __init__(self):
        pass

    def __call__(self, clip):
        """
        Args:
            clip (torch.tensor, dtype=torch.uint8): Size is (T, C, H, W)
        Return:
            clip (torch.tensor, dtype=torch.float): Size is (T, C, H, W)
        """
        return to_tensor(clip)

    def __repr__(self) -> str:
        return self.__class__.__name__


class ResizeCrop:
    def __init__(self, size):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size

    def __call__(self, clip):
        clip = resize_crop_to_fill(clip, self.size)
        return clip

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(size={self.size})"


def get_transforms_image(name="center", image_size=(256, 256)):
    if name is None:
        return None
    elif name == "center":
        assert image_size[0] == image_size[1], "Image size must be square for center crop"
        transform = transforms.Compose(
            [
                transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, image_size[0])),
                # transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
            ]
        )
    elif name == "resize_crop":
        transform = transforms.Compose(
            [
                transforms.Lambda(lambda pil_image: resize_crop_to_fill(pil_image, image_size)),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
            ]
        )
    else:
        raise NotImplementedError(f"Transform {name} not implemented")
    return transform


def center_crop_arr(pil_image, image_size):
    """
    Center cropping implementation from ADM.
    https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126
    """
    while min(*pil_image.size) >= 2 * image_size:
        pil_image = pil_image.resize(tuple(x // 2 for x in pil_image.size), resample=Image.BOX)

    scale = image_size / min(*pil_image.size)
    pil_image = pil_image.resize(tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC)

    arr = np.array(pil_image)
    crop_y = (arr.shape[0] - image_size) // 2
    crop_x = (arr.shape[1] - image_size) // 2
    return Image.fromarray(arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size])


def resize_crop_to_fill(pil_image, image_size):
    w, h = pil_image.size  # PIL is (W, H)
    th, tw = image_size
    rh, rw = th / h, tw / w
    if rh > rw:
        sh, sw = th, round(w * rh)
        image = pil_image.resize((sw, sh), Image.BICUBIC)
        i = 0
        j = int(round((sw - tw) / 2.0))
    else:
        sh, sw = round(h * rw), tw
        image = pil_image.resize((sw, sh), Image.BICUBIC)
        i = int(round((sh - th) / 2.0))
        j = 0
    arr = np.array(image)
    assert i + th <= arr.shape[0] and j + tw <= arr.shape[1]
    return Image.fromarray(arr[i : i + th, j : j + tw])


def read_video_from_path(path, transform=None, transform_name="center", image_size=(256, 256)):
    vframes, aframes, info = torchvision.io.read_video(filename=path, pts_unit="sec", output_format="TCHW")
    if transform is None:
        transform = get_transforms_video(image_size=image_size, name=transform_name)
    video = transform(vframes)  # T C H W
    video = video.permute(1, 0, 2, 3)
    return video


def read_from_path(path, image_size, transform_name="center"):
    if is_url(path):
        path = download_url(path)
    ext = os.path.splitext(path)[-1].lower()
    if ext.lower() in VID_EXTENSIONS:
        return read_video_from_path(path, image_size=image_size, transform_name=transform_name)
    else:
        assert ext.lower() in IMG_EXTENSIONS, f"Unsupported file format: {ext}"
        return read_image_from_path(path, image_size=image_size, transform_name=transform_name)


def read_image_from_path(path, transform=None, transform_name="center", num_frames=1, image_size=(256, 256)):
    image = pil_loader(path)
    if transform is None:
        transform = get_transforms_image(image_size=image_size, name=transform_name)
    image = transform(image)
    video = image.unsqueeze(0).repeat(num_frames, 1, 1, 1)
    video = video.permute(1, 0, 2, 3)
    return video