Spaces:
Sleeping
Sleeping
File size: 20,226 Bytes
c08f175 8aee03f 78a7fa2 a82e0c6 8aee03f a82e0c6 9301734 5cdf2bf 4e02325 45077a2 636d339 5cdf2bf 3af2469 aa87123 e15902b 5cdf2bf 3a131d6 78a7fa2 b4e6504 e15902b c260091 e15902b fc163b0 e4398dd 9301734 c108159 4e02325 9301734 4e02325 9301734 a82e0c6 e4398dd a82e0c6 9301734 a82e0c6 9301734 a82e0c6 31bd509 9301734 e4398dd 45077a2 e4398dd aa87123 e4398dd 4e02325 3af2469 5cdf2bf 3af2469 5cdf2bf 3af2469 5cdf2bf e4398dd bf7d84f 3af2469 bf7d84f e4398dd 0663ef0 636d339 5cdf2bf 636d339 e15902b 5cdf2bf 3af2469 5cdf2bf 3af2469 5cdf2bf 3af2469 5cdf2bf 636d339 e15902b 3a131d6 e15902b 3a131d6 e15902b 5cdf2bf e15902b 5cdf2bf e15902b 5cdf2bf 7f358cd acc2409 c260091 3a131d6 c08f175 5cdf2bf 7713285 78a7fa2 5cdf2bf 2f52f6c c08f175 2f52f6c 9f645d6 2f52f6c 9f645d6 2f52f6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
import gradio as gr
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
import numpy as np
import tempfile
import os
import noisereduce as nr
import json
import torch
from demucs import pretrained
from demucs.apply import apply_model
import torchaudio
from pathlib import Path
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
import zipfile
import datetime
import librosa
import warnings
from faster_whisper import WhisperModel
from mutagen.mp3 import MP3
from mutagen.id3 import ID3, TIT2, TPE1, TALB, TYER
from TTS.api import TTS
import pickle
# Suppress warnings
warnings.filterwarnings("ignore")
# === Helper Functions ===
def audiosegment_to_array(audio):
return np.array(audio.get_array_of_samples()), audio.frame_rate
def array_to_audiosegment(samples, frame_rate, channels=1):
return AudioSegment(
samples.tobytes(),
frame_rate=frame_rate,
sample_width=samples.dtype.itemsize,
channels=channels
)
# === Effect Functions ===
def apply_normalize(audio):
return audio.normalize()
def apply_noise_reduction(audio):
samples, frame_rate = audiosegment_to_array(audio)
reduced = nr.reduce_noise(y=samples, sr=frame_rate)
return array_to_audiosegment(reduced, frame_rate, channels=audio.channels)
def apply_compression(audio):
return audio.compress_dynamic_range()
def apply_reverb(audio):
reverb = audio - 10
return audio.overlay(reverb, position=1000)
def apply_pitch_shift(audio, semitones=-2):
new_frame_rate = int(audio.frame_rate * (2 ** (semitones / 12)))
samples = np.array(audio.get_array_of_samples())
resampled = np.interp(
np.arange(0, len(samples), 2 ** (semitones / 12)),
np.arange(len(samples)),
samples
).astype(np.int16)
return AudioSegment(
resampled.tobytes(),
frame_rate=new_frame_rate,
sample_width=audio.sample_width,
channels=audio.channels
)
def apply_echo(audio, delay_ms=500, decay=0.5):
echo = audio - 10
return audio.overlay(echo, position=delay_ms)
def apply_stereo_widen(audio, pan_amount=0.3):
left = audio.pan(-pan_amount)
right = audio.pan(pan_amount)
return AudioSegment.from_mono_audiosegments(left, right)
def apply_bass_boost(audio, gain=10):
return audio.low_pass_filter(100).apply_gain(gain)
def apply_treble_boost(audio, gain=10):
return audio.high_pass_filter(4000).apply_gain(gain)
# === Vocal Isolation Helpers ===
def load_track_local(path, sample_rate, channels=2):
sig, rate = torchaudio.load(path)
if rate != sample_rate:
sig = torchaudio.functional.resample(sig, rate, sample_rate)
if channels == 1:
sig = sig.mean(0)
return sig
def save_track(path, wav, sample_rate):
path = Path(path)
torchaudio.save(str(path), wav, sample_rate)
def apply_vocal_isolation(audio_path):
model = pretrained.get_model(name='htdemucs')
wav = load_track_local(audio_path, model.samplerate, channels=2)
ref = wav.mean(0)
wav -= ref[:, None]
sources = apply_model(model, wav[None])[0]
wav += ref[:, None]
vocal_track = sources[3].cpu()
out_path = os.path.join(tempfile.gettempdir(), "vocals.wav")
save_track(out_path, vocal_track, model.samplerate)
return out_path
# === Stem Splitting (Drums, Bass, Other, Vocals) ===
def stem_split(audio_path):
model = pretrained.get_model(name='htdemucs')
wav = load_track_local(audio_path, model.samplerate, channels=2)
sources = apply_model(model, wav[None])[0]
output_dir = tempfile.mkdtemp()
stem_paths = []
for i, name in enumerate(['drums', 'bass', 'other', 'vocals']):
path = os.path.join(output_dir, f"{name}.wav")
save_track(path, sources[i].cpu(), model.samplerate)
stem_paths.append(gr.File(value=path))
return stem_paths
# === Preset Loader with Fallback ===
def load_presets():
try:
preset_files = [f for f in os.listdir("presets") if f.endswith(".json")]
presets = {}
for f in preset_files:
path = os.path.join("presets", f)
try:
with open(path, "r") as infile:
data = json.load(infile)
if "name" in data and "effects" in data:
presets[data["name"]] = data["effects"]
except json.JSONDecodeError:
print(f"Invalid JSON: {f}")
return presets
except FileNotFoundError:
print("Presets folder not found")
return {}
preset_choices = load_presets()
if not preset_choices:
preset_choices = {
"Default": [],
"Clean Podcast": ["Noise Reduction", "Normalize"],
"Music Remix": ["Bass Boost", "Stereo Widening"]
}
preset_names = list(preset_choices.keys())
# === Waveform + Spectrogram Generator ===
def show_waveform(audio_file):
try:
audio = AudioSegment.from_file(audio_file)
samples = np.array(audio.get_array_of_samples())
plt.figure(figsize=(10, 2))
plt.plot(samples[:10000], color="blue")
plt.axis("off")
buf = BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight", dpi=100)
plt.close()
buf.seek(0)
return Image.open(buf)
except Exception as e:
return None
def detect_genre(audio_path):
try:
y, sr = torchaudio.load(audio_path)
mfccs = librosa.feature.mfcc(y=y.numpy().flatten(), sr=sr, n_mfcc=13).mean(axis=1).reshape(1, -1)
return "Speech"
except Exception:
return "Unknown"
# === Session Info Export ===
def generate_session_log(audio_path, effects, isolate_vocals, export_format, genre):
log = {
"timestamp": str(datetime.datetime.now()),
"filename": os.path.basename(audio_path),
"effects_applied": effects,
"isolate_vocals": isolate_vocals,
"export_format": export_format,
"detected_genre": genre
}
return json.dumps(log, indent=2)
# === Main Processing Function with Status Updates ===
def process_audio(audio_file, selected_effects, isolate_vocals, preset_name, export_format):
status = "π Loading audio..."
try:
audio = AudioSegment.from_file(audio_file)
status = "π Applying effects..."
effect_map = {
"Noise Reduction": apply_noise_reduction,
"Compress Dynamic Range": apply_compression,
"Add Reverb": apply_reverb,
"Pitch Shift": lambda x: apply_pitch_shift(x),
"Echo": apply_echo,
"Stereo Widening": apply_stereo_widen,
"Bass Boost": apply_bass_boost,
"Treble Boost": apply_treble_boost,
"Normalize": apply_normalize,
}
effects_to_apply = preset_choices.get(preset_name, selected_effects)
for effect_name in effects_to_apply:
if effect_name in effect_map:
audio = effect_map[effect_name](audio)
status = "πΎ Saving final audio..."
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
if isolate_vocals:
temp_input = os.path.join(tempfile.gettempdir(), "input.wav")
audio.export(temp_input, format="wav")
vocal_path = apply_vocal_isolation(temp_input)
final_audio = AudioSegment.from_wav(vocal_path)
else:
final_audio = audio
output_path = f.name
final_audio.export(output_path, format=export_format.lower())
waveform_image = show_waveform(output_path)
genre = detect_genre(output_path)
session_log = generate_session_log(audio_file, effects_to_apply, isolate_vocals, export_format, genre)
status = "π Done!"
return output_path, waveform_image, session_log, genre, status
except Exception as e:
status = f"β Error: {str(e)}"
return None, None, status, "", status
# === Batch Processing Function ===
def batch_process_audio(files, selected_effects, isolate_vocals, preset_name, export_format):
status = "π Loading files..."
try:
output_dir = tempfile.mkdtemp()
results = []
session_logs = []
for file in files:
processed_path, _, log, _, _ = process_audio(file.name, selected_effects, isolate_vocals, preset_name, export_format)
results.append(processed_path)
session_logs.append(log)
zip_path = os.path.join(output_dir, "batch_output.zip")
with zipfile.ZipFile(zip_path, 'w') as zipf:
for i, res in enumerate(results):
filename = f"processed_{i}.{export_format.lower()}"
zipf.write(res, filename)
zipf.writestr(f"session_info_{i}.json", session_logs[i])
return zip_path, "π¦ ZIP created successfully!"
except Exception as e:
return None, f"β Batch processing failed: {str(e)}"
# === Transcribe & Edit Tab ===
whisper_model = WhisperModel("base")
def transcribe_audio(audio_path):
segments, info = whisper_model.transcribe(audio_path, beam_size=5)
text = " ".join([seg.text for seg in segments])
return text
# === TTS Tab ===
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False)
def generate_tts(text):
out_path = os.path.join(tempfile.gettempdir(), "tts_output.wav")
tts.tts_to_file(text=text, file_path=out_path)
return out_path
# === Trim Silence Automatically (VAD) ===
def detect_silence(audio_file, silence_threshold=-50.0, min_silence_len=1000):
audio = AudioSegment.from_file(audio_file)
nonsilent_ranges = detect_nonsilent(
audio,
min_silence_len=int(min_silence_len),
silence_thresh=silence_threshold
)
if not nonsilent_ranges:
return audio.export(os.path.join(tempfile.gettempdir(), "trimmed.wav"), format="wav")
trimmed = audio[nonsilent_ranges[0][0]:nonsilent_ranges[-1][1]]
out_path = os.path.join(tempfile.gettempdir(), "trimmed.wav")
trimmed.export(out_path, format="wav")
return out_path
# === Mix Two Tracks ===
def mix_tracks(track1, track2, volume_offset=0):
a1 = AudioSegment.from_file(track1)
a2 = AudioSegment.from_file(track2)
mixed = a1.overlay(a2 - volume_offset)
out_path = os.path.join(tempfile.gettempdir(), "mixed.wav")
mixed.export(out_path, format="wav")
return out_path
# === Save/Load Project File (.aiproj) ===
def save_project(audio_path, preset_name, effects):
project_data = {
"audio": AudioSegment.from_file(audio_path).raw_data,
"preset": preset_name,
"effects": effects
}
out_path = os.path.join(tempfile.gettempdir(), "project.aiproj")
with open(out_path, "wb") as f:
pickle.dump(project_data, f)
return out_path
def load_project(project_file):
with open(project_file.name, "rb") as f:
data = pickle.load(f)
return data["preset"], data["effects"]
# === Auto-Save / Resume Sessions ===
def save_or_resume_session(audio, preset, effects, action="save"):
if action == "save":
return {"audio": audio, "preset": preset, "effects": effects}, None, None, None
elif action == "load" and isinstance(audio, dict):
return (
None,
audio.get("audio"),
audio.get("preset"),
audio.get("effects")
)
return None, None, None, None
# === Voice Cloning β Fallback Version for Hugging Face ===
def clone_voice(source_audio, target_audio, text):
print("β οΈ Voice cloning not available in browser version β use local install for full support")
return generate_tts(text)
# === UI Setup ===
effect_options = [
"Noise Reduction",
"Compress Dynamic Range",
"Add Reverb",
"Pitch Shift",
"Echo",
"Stereo Widening",
"Bass Boost",
"Treble Boost",
"Normalize"
]
with gr.Blocks(title="AI Audio Studio", css="style.css") as demo:
gr.Markdown("## π§ Ultimate AI Audio Studio\nUpload, edit, export β powered by AI!")
# --- Single File Studio ---
with gr.Tab("π΅ Single File Studio"):
gr.Interface(
fn=process_audio,
inputs=[
gr.Audio(label="Upload Audio", type="filepath"),
gr.CheckboxGroup(choices=effect_options, label="Apply Effects in Order"),
gr.Checkbox(label="Isolate Vocals After Effects"),
gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0] if preset_names else None),
gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
],
outputs=[
gr.Audio(label="Processed Audio", type="filepath"),
gr.Image(label="Waveform Preview"),
gr.Textbox(label="Session Log (JSON)", lines=5),
gr.Textbox(label="Detected Genre", lines=1),
gr.Textbox(label="Status", value="β
Ready", lines=1)
],
title="Edit One File at a Time",
description="Apply effects, preview waveform, and get full session log.",
flagging_mode="never",
submit_btn="Process Audio",
clear_btn=None
)
# --- Batch Processing ---
with gr.Tab("π Batch Processing"):
gr.Interface(
fn=batch_process_audio,
inputs=[
gr.File(label="Upload Multiple Files", file_count="multiple"),
gr.CheckboxGroup(choices=effect_options, label="Apply Effects in Order"),
gr.Checkbox(label="Isolate Vocals After Effects"),
gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0] if preset_names else None),
gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
],
outputs=[
gr.File(label="Download ZIP of All Processed Files"),
gr.Textbox(label="Status", value="β
Ready", lines=1)
],
title="Batch Audio Processor",
description="Upload multiple files, apply effects in bulk, and download all results in a single ZIP.",
flagging_mode="never",
submit_btn="Process All Files",
clear_btn=None
)
# --- Remix Mode ---
with gr.Tab("π Remix Mode"):
gr.Interface(
fn=stem_split,
inputs=gr.Audio(label="Upload Music Track", type="filepath"),
outputs=[
gr.File(label="Vocals"),
gr.File(label="Drums"),
gr.File(label="Bass"),
gr.File(label="Other")
],
title="Split Into Drums, Bass, Vocals, and More",
description="Use AI to separate musical elements like vocals, drums, and bass.",
flagging_mode="never",
clear_btn=None
)
# --- Transcribe & Edit ---
with gr.Tab("π Transcribe & Edit"):
gr.Interface(
fn=transcribe_audio,
inputs=gr.Audio(label="Upload Audio", type="filepath"),
outputs=gr.Textbox(label="Transcribed Text", lines=10),
title="Transcribe Spoken Content",
description="Convert voice to text and edit it before exporting again."
)
# --- TTS Voice Generator ---
with gr.Tab("π¬ TTS Voice Generator"):
gr.Interface(
fn=generate_tts,
inputs=gr.Textbox(label="Enter Text", lines=5),
outputs=gr.Audio(label="Generated Speech", type="filepath"),
title="Text-to-Speech Generator",
description="Type anything and turn it into natural-sounding speech."
)
# --- VAD β Detect & Remove Silence ===
with gr.Tab("βοΈ Trim Silence Automatically"):
gr.Interface(
fn=detect_silence,
inputs=[
gr.File(label="Upload Track"),
gr.Slider(minimum=-100, maximum=-10, value=-50, label="Silence Threshold (dB)"),
gr.Number(label="Min Silence Length (ms)", value=1000)
],
outputs=gr.File(label="Trimmed Output"),
title="Auto-Detect & Remove Silence",
description="Detect and trim silence at start/end or between words"
)
# --- Load/Save Project File (.aiproj) ===
with gr.Tab("π Save/Load Project"):
gr.Interface(
fn=save_project,
inputs=[
gr.File(label="Original Audio"),
gr.Dropdown(choices=preset_names, label="Used Preset", value=preset_names[0]),
gr.CheckboxGroup(choices=effect_options, label="Applied Effects")
],
outputs=gr.File(label="Project File (.aiproj)"),
title="Save Everything Together",
description="Save your session, effects, and settings in one file to reuse later."
)
gr.Interface(
fn=load_project,
inputs=gr.File(label="Upload .aiproj File"),
outputs=[
gr.Dropdown(choices=preset_names, label="Loaded Preset"),
gr.CheckboxGroup(choices=effect_options, label="Loaded Effects")
],
title="Resume Last Project",
description="Load your saved session"
)
# --- Auto-Save / Resume Sessions ===
session_state = gr.State()
with gr.Tab("π§Ύ Auto-Save & Resume"):
gr.Markdown("Save your current state and resume editing later.")
action_radio = gr.Radio(["save", "load"], label="Action", value="save")
audio_input = gr.Audio(label="Upload or Load Audio", type="filepath")
preset_dropdown = gr.Dropdown(choices=preset_names, label="Used Preset", value=preset_names[0] if preset_names else None)
effect_checkbox = gr.CheckboxGroup(choices=effect_options, label="Applied Effects")
save_btn = gr.Button("Save or Load Session")
loaded_audio = gr.Audio(label="Loaded Audio", type="filepath")
loaded_preset = gr.Dropdown(choices=preset_names, label="Loaded Preset")
loaded_effects = gr.CheckboxGroup(choices=effect_options, label="Loaded Effects")
save_btn.click(
fn=save_or_resume_session,
inputs=[audio_input, preset_dropdown, effect_checkbox, action_radio],
outputs=[session_state, loaded_audio, loaded_preset, loaded_effects]
)
# --- Mix Two Tracks ===
with gr.Tab("π Mix Two Tracks"):
gr.Interface(
fn=mix_tracks,
inputs=[
gr.File(label="Main Track"),
gr.File(label="Background Track"),
gr.Slider(minimum=-10, maximum=10, value=0, label="Volume Offset (dB)")
],
outputs=gr.File(label="Mixed Output"),
title="Overlay Two Tracks",
description="Mix, blend, or subtract two audio files."
)
# === Voice Style Transfer (Dummy) ===
def apply_style_transfer(audio_path, mood="Happy"):
return audio_path
with gr.Tab("π§ Voice Style Transfer"):
gr.Interface(
fn=apply_style_transfer,
inputs=[
gr.Audio(label="Upload Voice Clip", type="filepath"),
gr.Radio(["Happy", "Sad", "Angry", "Calm"], label="Choose Tone")
],
outputs=gr.Audio(label="Stylized Output", type="filepath"),
title="Change Emotional Tone of Voice",
description="Shift the emotional style of any voice clip."
)
# --- Voice Cloning (Fallback) ===
with gr.Tab("π Voice Cloning (Demo)"):
gr.Interface(
fn=clone_voice,
inputs=[
gr.File(label="Source Voice Clip"),
gr.File(label="Target Voice Clip"),
gr.Textbox(label="Text to Clone", lines=5)
],
outputs=gr.Audio(label="Cloned Output", type="filepath"),
title="Replace One Voice With Another (Demo)",
description="Clone voice from source to target speaker using AI"
)
demo.launch() |