File size: 20,226 Bytes
c08f175
8aee03f
78a7fa2
a82e0c6
8aee03f
a82e0c6
9301734
5cdf2bf
4e02325
 
 
45077a2
 
636d339
 
 
5cdf2bf
3af2469
aa87123
e15902b
5cdf2bf
3a131d6
 
78a7fa2
b4e6504
e15902b
c260091
e15902b
fc163b0
e4398dd
9301734
 
c108159
4e02325
9301734
 
 
4e02325
9301734
 
a82e0c6
e4398dd
a82e0c6
 
 
 
 
9301734
 
a82e0c6
 
 
 
 
9301734
 
a82e0c6
 
31bd509
9301734
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4398dd
45077a2
 
 
 
 
 
 
 
 
 
 
e4398dd
 
 
 
 
 
 
 
 
aa87123
e4398dd
 
4e02325
 
3af2469
 
 
 
 
 
 
 
 
 
 
 
5cdf2bf
3af2469
5cdf2bf
3af2469
5cdf2bf
e4398dd
bf7d84f
 
 
 
 
 
 
 
 
 
 
3af2469
bf7d84f
 
 
 
e4398dd
0663ef0
 
 
636d339
 
 
 
 
 
 
 
5cdf2bf
636d339
e15902b
 
 
 
 
 
 
 
 
 
 
 
 
 
5cdf2bf
 
 
 
 
 
 
 
3af2469
5cdf2bf
3af2469
 
 
 
 
5cdf2bf
 
3af2469
 
 
5cdf2bf
636d339
e15902b
 
 
 
3a131d6
e15902b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a131d6
e15902b
 
 
 
 
 
 
 
 
 
 
 
5cdf2bf
 
e15902b
 
5cdf2bf
e15902b
 
 
5cdf2bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f358cd
acc2409
c260091
3a131d6
c08f175
 
 
 
 
5cdf2bf
 
 
 
 
 
 
 
7713285
78a7fa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cdf2bf
 
 
 
 
 
 
 
 
2f52f6c
 
 
 
 
 
 
 
 
 
 
c08f175
2f52f6c
 
 
 
9f645d6
2f52f6c
 
 
 
 
 
 
 
 
 
 
 
 
 
9f645d6
2f52f6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
import gradio as gr
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
import numpy as np
import tempfile
import os
import noisereduce as nr
import json
import torch
from demucs import pretrained
from demucs.apply import apply_model
import torchaudio
from pathlib import Path
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
import zipfile
import datetime
import librosa
import warnings
from faster_whisper import WhisperModel
from mutagen.mp3 import MP3
from mutagen.id3 import ID3, TIT2, TPE1, TALB, TYER
from TTS.api import TTS
import pickle

# Suppress warnings
warnings.filterwarnings("ignore")

# === Helper Functions ===
def audiosegment_to_array(audio):
    return np.array(audio.get_array_of_samples()), audio.frame_rate

def array_to_audiosegment(samples, frame_rate, channels=1):
    return AudioSegment(
        samples.tobytes(),
        frame_rate=frame_rate,
        sample_width=samples.dtype.itemsize,
        channels=channels
    )

# === Effect Functions ===
def apply_normalize(audio):
    return audio.normalize()

def apply_noise_reduction(audio):
    samples, frame_rate = audiosegment_to_array(audio)
    reduced = nr.reduce_noise(y=samples, sr=frame_rate)
    return array_to_audiosegment(reduced, frame_rate, channels=audio.channels)

def apply_compression(audio):
    return audio.compress_dynamic_range()

def apply_reverb(audio):
    reverb = audio - 10
    return audio.overlay(reverb, position=1000)

def apply_pitch_shift(audio, semitones=-2):
    new_frame_rate = int(audio.frame_rate * (2 ** (semitones / 12)))
    samples = np.array(audio.get_array_of_samples())
    resampled = np.interp(
        np.arange(0, len(samples), 2 ** (semitones / 12)),
        np.arange(len(samples)),
        samples
    ).astype(np.int16)
    return AudioSegment(
        resampled.tobytes(),
        frame_rate=new_frame_rate,
        sample_width=audio.sample_width,
        channels=audio.channels
    )

def apply_echo(audio, delay_ms=500, decay=0.5):
    echo = audio - 10
    return audio.overlay(echo, position=delay_ms)

def apply_stereo_widen(audio, pan_amount=0.3):
    left = audio.pan(-pan_amount)
    right = audio.pan(pan_amount)
    return AudioSegment.from_mono_audiosegments(left, right)

def apply_bass_boost(audio, gain=10):
    return audio.low_pass_filter(100).apply_gain(gain)

def apply_treble_boost(audio, gain=10):
    return audio.high_pass_filter(4000).apply_gain(gain)

# === Vocal Isolation Helpers ===
def load_track_local(path, sample_rate, channels=2):
    sig, rate = torchaudio.load(path)
    if rate != sample_rate:
        sig = torchaudio.functional.resample(sig, rate, sample_rate)
    if channels == 1:
        sig = sig.mean(0)
    return sig

def save_track(path, wav, sample_rate):
    path = Path(path)
    torchaudio.save(str(path), wav, sample_rate)

def apply_vocal_isolation(audio_path):
    model = pretrained.get_model(name='htdemucs')
    wav = load_track_local(audio_path, model.samplerate, channels=2)
    ref = wav.mean(0)
    wav -= ref[:, None]
    sources = apply_model(model, wav[None])[0]
    wav += ref[:, None]

    vocal_track = sources[3].cpu()
    out_path = os.path.join(tempfile.gettempdir(), "vocals.wav")
    save_track(out_path, vocal_track, model.samplerate)
    return out_path

# === Stem Splitting (Drums, Bass, Other, Vocals) ===
def stem_split(audio_path):
    model = pretrained.get_model(name='htdemucs')
    wav = load_track_local(audio_path, model.samplerate, channels=2)
    sources = apply_model(model, wav[None])[0]

    output_dir = tempfile.mkdtemp()
    stem_paths = []

    for i, name in enumerate(['drums', 'bass', 'other', 'vocals']):
        path = os.path.join(output_dir, f"{name}.wav")
        save_track(path, sources[i].cpu(), model.samplerate)
        stem_paths.append(gr.File(value=path))

    return stem_paths

# === Preset Loader with Fallback ===
def load_presets():
    try:
        preset_files = [f for f in os.listdir("presets") if f.endswith(".json")]
        presets = {}
        for f in preset_files:
            path = os.path.join("presets", f)
            try:
                with open(path, "r") as infile:
                    data = json.load(infile)
                    if "name" in data and "effects" in data:
                        presets[data["name"]] = data["effects"]
            except json.JSONDecodeError:
                print(f"Invalid JSON: {f}")
        return presets
    except FileNotFoundError:
        print("Presets folder not found")
        return {}

preset_choices = load_presets()

if not preset_choices:
    preset_choices = {
        "Default": [],
        "Clean Podcast": ["Noise Reduction", "Normalize"],
        "Music Remix": ["Bass Boost", "Stereo Widening"]
    }

preset_names = list(preset_choices.keys())

# === Waveform + Spectrogram Generator ===
def show_waveform(audio_file):
    try:
        audio = AudioSegment.from_file(audio_file)
        samples = np.array(audio.get_array_of_samples())
        plt.figure(figsize=(10, 2))
        plt.plot(samples[:10000], color="blue")
        plt.axis("off")
        buf = BytesIO()
        plt.savefig(buf, format="png", bbox_inches="tight", dpi=100)
        plt.close()
        buf.seek(0)
        return Image.open(buf)
    except Exception as e:
        return None

def detect_genre(audio_path):
    try:
        y, sr = torchaudio.load(audio_path)
        mfccs = librosa.feature.mfcc(y=y.numpy().flatten(), sr=sr, n_mfcc=13).mean(axis=1).reshape(1, -1)
        return "Speech"
    except Exception:
        return "Unknown"

# === Session Info Export ===
def generate_session_log(audio_path, effects, isolate_vocals, export_format, genre):
    log = {
        "timestamp": str(datetime.datetime.now()),
        "filename": os.path.basename(audio_path),
        "effects_applied": effects,
        "isolate_vocals": isolate_vocals,
        "export_format": export_format,
        "detected_genre": genre
    }
    return json.dumps(log, indent=2)

# === Main Processing Function with Status Updates ===
def process_audio(audio_file, selected_effects, isolate_vocals, preset_name, export_format):
    status = "πŸ”Š Loading audio..."
    try:
        audio = AudioSegment.from_file(audio_file)
        status = "πŸ›  Applying effects..."

        effect_map = {
            "Noise Reduction": apply_noise_reduction,
            "Compress Dynamic Range": apply_compression,
            "Add Reverb": apply_reverb,
            "Pitch Shift": lambda x: apply_pitch_shift(x),
            "Echo": apply_echo,
            "Stereo Widening": apply_stereo_widen,
            "Bass Boost": apply_bass_boost,
            "Treble Boost": apply_treble_boost,
            "Normalize": apply_normalize,
        }

        effects_to_apply = preset_choices.get(preset_name, selected_effects)
        for effect_name in effects_to_apply:
            if effect_name in effect_map:
                audio = effect_map[effect_name](audio)

        status = "πŸ’Ύ Saving final audio..."
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
            if isolate_vocals:
                temp_input = os.path.join(tempfile.gettempdir(), "input.wav")
                audio.export(temp_input, format="wav")
                vocal_path = apply_vocal_isolation(temp_input)
                final_audio = AudioSegment.from_wav(vocal_path)
            else:
                final_audio = audio

            output_path = f.name
            final_audio.export(output_path, format=export_format.lower())

            waveform_image = show_waveform(output_path)
            genre = detect_genre(output_path)
            session_log = generate_session_log(audio_file, effects_to_apply, isolate_vocals, export_format, genre)

            status = "πŸŽ‰ Done!"
            return output_path, waveform_image, session_log, genre, status

    except Exception as e:
        status = f"❌ Error: {str(e)}"
        return None, None, status, "", status

# === Batch Processing Function ===
def batch_process_audio(files, selected_effects, isolate_vocals, preset_name, export_format):
    status = "πŸ”Š Loading files..."
    try:
        output_dir = tempfile.mkdtemp()
        results = []
        session_logs = []

        for file in files:
            processed_path, _, log, _, _ = process_audio(file.name, selected_effects, isolate_vocals, preset_name, export_format)
            results.append(processed_path)
            session_logs.append(log)

        zip_path = os.path.join(output_dir, "batch_output.zip")
        with zipfile.ZipFile(zip_path, 'w') as zipf:
            for i, res in enumerate(results):
                filename = f"processed_{i}.{export_format.lower()}"
                zipf.write(res, filename)
                zipf.writestr(f"session_info_{i}.json", session_logs[i])

        return zip_path, "πŸ“¦ ZIP created successfully!"

    except Exception as e:
        return None, f"❌ Batch processing failed: {str(e)}"

# === Transcribe & Edit Tab ===
whisper_model = WhisperModel("base")

def transcribe_audio(audio_path):
    segments, info = whisper_model.transcribe(audio_path, beam_size=5)
    text = " ".join([seg.text for seg in segments])
    return text

# === TTS Tab ===
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False)

def generate_tts(text):
    out_path = os.path.join(tempfile.gettempdir(), "tts_output.wav")
    tts.tts_to_file(text=text, file_path=out_path)
    return out_path

# === Trim Silence Automatically (VAD) ===
def detect_silence(audio_file, silence_threshold=-50.0, min_silence_len=1000):
    audio = AudioSegment.from_file(audio_file)
    
    nonsilent_ranges = detect_nonsilent(
        audio,
        min_silence_len=int(min_silence_len),
        silence_thresh=silence_threshold
    )
    
    if not nonsilent_ranges:
        return audio.export(os.path.join(tempfile.gettempdir(), "trimmed.wav"), format="wav")

    trimmed = audio[nonsilent_ranges[0][0]:nonsilent_ranges[-1][1]]
    out_path = os.path.join(tempfile.gettempdir(), "trimmed.wav")
    trimmed.export(out_path, format="wav")
    return out_path

# === Mix Two Tracks ===
def mix_tracks(track1, track2, volume_offset=0):
    a1 = AudioSegment.from_file(track1)
    a2 = AudioSegment.from_file(track2)
    mixed = a1.overlay(a2 - volume_offset)
    out_path = os.path.join(tempfile.gettempdir(), "mixed.wav")
    mixed.export(out_path, format="wav")
    return out_path

# === Save/Load Project File (.aiproj) ===
def save_project(audio_path, preset_name, effects):
    project_data = {
        "audio": AudioSegment.from_file(audio_path).raw_data,
        "preset": preset_name,
        "effects": effects
    }
    out_path = os.path.join(tempfile.gettempdir(), "project.aiproj")
    with open(out_path, "wb") as f:
        pickle.dump(project_data, f)
    return out_path

def load_project(project_file):
    with open(project_file.name, "rb") as f:
        data = pickle.load(f)
    return data["preset"], data["effects"]

# === Auto-Save / Resume Sessions ===
def save_or_resume_session(audio, preset, effects, action="save"):
    if action == "save":
        return {"audio": audio, "preset": preset, "effects": effects}, None, None, None
    elif action == "load" and isinstance(audio, dict):
        return (
            None,
            audio.get("audio"),
            audio.get("preset"),
            audio.get("effects")
        )
    return None, None, None, None

# === Voice Cloning – Fallback Version for Hugging Face ===
def clone_voice(source_audio, target_audio, text):
    print("⚠️ Voice cloning not available in browser version β€” use local install for full support")
    return generate_tts(text)

# === UI Setup ===
effect_options = [
    "Noise Reduction",
    "Compress Dynamic Range",
    "Add Reverb",
    "Pitch Shift",
    "Echo",
    "Stereo Widening",
    "Bass Boost",
    "Treble Boost",
    "Normalize"
]

with gr.Blocks(title="AI Audio Studio", css="style.css") as demo:
    gr.Markdown("## 🎧 Ultimate AI Audio Studio\nUpload, edit, export β€” powered by AI!")

    # --- Single File Studio ---
    with gr.Tab("🎡 Single File Studio"):
        gr.Interface(
            fn=process_audio,
            inputs=[
                gr.Audio(label="Upload Audio", type="filepath"),
                gr.CheckboxGroup(choices=effect_options, label="Apply Effects in Order"),
                gr.Checkbox(label="Isolate Vocals After Effects"),
                gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0] if preset_names else None),
                gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
            ],
            outputs=[
                gr.Audio(label="Processed Audio", type="filepath"),
                gr.Image(label="Waveform Preview"),
                gr.Textbox(label="Session Log (JSON)", lines=5),
                gr.Textbox(label="Detected Genre", lines=1),
                gr.Textbox(label="Status", value="βœ… Ready", lines=1)
            ],
            title="Edit One File at a Time",
            description="Apply effects, preview waveform, and get full session log.",
            flagging_mode="never",
            submit_btn="Process Audio",
            clear_btn=None
        )

    # --- Batch Processing ---
    with gr.Tab("πŸ”Š Batch Processing"):
        gr.Interface(
            fn=batch_process_audio,
            inputs=[
                gr.File(label="Upload Multiple Files", file_count="multiple"),
                gr.CheckboxGroup(choices=effect_options, label="Apply Effects in Order"),
                gr.Checkbox(label="Isolate Vocals After Effects"),
                gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0] if preset_names else None),
                gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
            ],
            outputs=[
                gr.File(label="Download ZIP of All Processed Files"),
                gr.Textbox(label="Status", value="βœ… Ready", lines=1)
            ],
            title="Batch Audio Processor",
            description="Upload multiple files, apply effects in bulk, and download all results in a single ZIP.",
            flagging_mode="never",
            submit_btn="Process All Files",
            clear_btn=None
        )

    # --- Remix Mode ---
    with gr.Tab("πŸŽ› Remix Mode"):
        gr.Interface(
            fn=stem_split,
            inputs=gr.Audio(label="Upload Music Track", type="filepath"),
            outputs=[
                gr.File(label="Vocals"),
                gr.File(label="Drums"),
                gr.File(label="Bass"),
                gr.File(label="Other")
            ],
            title="Split Into Drums, Bass, Vocals, and More",
            description="Use AI to separate musical elements like vocals, drums, and bass.",
            flagging_mode="never",
            clear_btn=None
        )

    # --- Transcribe & Edit ---
    with gr.Tab("πŸ“ Transcribe & Edit"):
        gr.Interface(
            fn=transcribe_audio,
            inputs=gr.Audio(label="Upload Audio", type="filepath"),
            outputs=gr.Textbox(label="Transcribed Text", lines=10),
            title="Transcribe Spoken Content",
            description="Convert voice to text and edit it before exporting again."
        )

    # --- TTS Voice Generator ---
    with gr.Tab("πŸ’¬ TTS Voice Generator"):
        gr.Interface(
            fn=generate_tts,
            inputs=gr.Textbox(label="Enter Text", lines=5),
            outputs=gr.Audio(label="Generated Speech", type="filepath"),
            title="Text-to-Speech Generator",
            description="Type anything and turn it into natural-sounding speech."
        )

    # --- VAD – Detect & Remove Silence ===
    with gr.Tab("βœ‚οΈ Trim Silence Automatically"):
        gr.Interface(
            fn=detect_silence,
            inputs=[
                gr.File(label="Upload Track"),
                gr.Slider(minimum=-100, maximum=-10, value=-50, label="Silence Threshold (dB)"),
                gr.Number(label="Min Silence Length (ms)", value=1000)
            ],
            outputs=gr.File(label="Trimmed Output"),
            title="Auto-Detect & Remove Silence",
            description="Detect and trim silence at start/end or between words"
        )

    # --- Load/Save Project File (.aiproj) ===
    with gr.Tab("πŸ“ Save/Load Project"):
        gr.Interface(
            fn=save_project,
            inputs=[
                gr.File(label="Original Audio"),
                gr.Dropdown(choices=preset_names, label="Used Preset", value=preset_names[0]),
                gr.CheckboxGroup(choices=effect_options, label="Applied Effects")
            ],
            outputs=gr.File(label="Project File (.aiproj)"),
            title="Save Everything Together",
            description="Save your session, effects, and settings in one file to reuse later."
        )

        gr.Interface(
            fn=load_project,
            inputs=gr.File(label="Upload .aiproj File"),
            outputs=[
                gr.Dropdown(choices=preset_names, label="Loaded Preset"),
                gr.CheckboxGroup(choices=effect_options, label="Loaded Effects")
            ],
            title="Resume Last Project",
            description="Load your saved session"
        )

    # --- Auto-Save / Resume Sessions ===
    session_state = gr.State()

    with gr.Tab("🧾 Auto-Save & Resume"):
        gr.Markdown("Save your current state and resume editing later.")

        action_radio = gr.Radio(["save", "load"], label="Action", value="save")
        audio_input = gr.Audio(label="Upload or Load Audio", type="filepath")
        preset_dropdown = gr.Dropdown(choices=preset_names, label="Used Preset", value=preset_names[0] if preset_names else None)
        effect_checkbox = gr.CheckboxGroup(choices=effect_options, label="Applied Effects")
        save_btn = gr.Button("Save or Load Session")

        loaded_audio = gr.Audio(label="Loaded Audio", type="filepath")
        loaded_preset = gr.Dropdown(choices=preset_names, label="Loaded Preset")
        loaded_effects = gr.CheckboxGroup(choices=effect_options, label="Loaded Effects")

        save_btn.click(
            fn=save_or_resume_session,
            inputs=[audio_input, preset_dropdown, effect_checkbox, action_radio],
            outputs=[session_state, loaded_audio, loaded_preset, loaded_effects]
        )

    # --- Mix Two Tracks ===
    with gr.Tab("πŸ”€ Mix Two Tracks"):
        gr.Interface(
            fn=mix_tracks,
            inputs=[
                gr.File(label="Main Track"),
                gr.File(label="Background Track"),
                gr.Slider(minimum=-10, maximum=10, value=0, label="Volume Offset (dB)")
            ],
            outputs=gr.File(label="Mixed Output"),
            title="Overlay Two Tracks",
            description="Mix, blend, or subtract two audio files."
        )

    # === Voice Style Transfer (Dummy) ===
    def apply_style_transfer(audio_path, mood="Happy"):
        return audio_path

    with gr.Tab("🧠 Voice Style Transfer"):
        gr.Interface(
            fn=apply_style_transfer,
            inputs=[
                gr.Audio(label="Upload Voice Clip", type="filepath"),
                gr.Radio(["Happy", "Sad", "Angry", "Calm"], label="Choose Tone")
            ],
            outputs=gr.Audio(label="Stylized Output", type="filepath"),
            title="Change Emotional Tone of Voice",
            description="Shift the emotional style of any voice clip."
        )

    # --- Voice Cloning (Fallback) ===
    with gr.Tab("🎭 Voice Cloning (Demo)"):
        gr.Interface(
            fn=clone_voice,
            inputs=[
                gr.File(label="Source Voice Clip"),
                gr.File(label="Target Voice Clip"),
                gr.Textbox(label="Text to Clone", lines=5)
            ],
            outputs=gr.Audio(label="Cloned Output", type="filepath"),
            title="Replace One Voice With Another (Demo)",
            description="Clone voice from source to target speaker using AI"
        )

demo.launch()