Spaces:
Sleeping
Sleeping
File size: 14,383 Bytes
a97d040 92d8c87 a97d040 92d8c87 a97d040 92d8c87 a97d040 c320a1b a97d040 c320a1b a97d040 92d8c87 a97d040 92d8c87 a97d040 70cc6ab a97d040 92d8c87 70cc6ab 92d8c87 a97d040 92d8c87 70cc6ab 92d8c87 70cc6ab 92d8c87 a97d040 92d8c87 a97d040 92d8c87 a97d040 92d8c87 a97d040 92d8c87 a97d040 92d8c87 a97d040 92d8c87 a97d040 92d8c87 a97d040 92d8c87 a97d040 92d8c87 a97d040 92d8c87 a97d040 92d8c87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import os
import re
import json
import subprocess
import glob
from pathlib import Path
from concurrent.futures import ProcessPoolExecutor
from langchain_community.document_loaders import UnstructuredMarkdownLoader
from langchain.schema import Document
import shutil
import tempfile
from .path_utils import get_path
class DocumentLoading:
def convert_pdf_to_md(self, pdf_file, output_dir="output", method="auto"):
base_name = os.path.splitext(os.path.basename(pdf_file))[0]
target_dir = os.path.join(output_dir, base_name)
md_file_path = os.path.join(target_dir, method, f"{base_name}.md")
print("The md file path is: ", md_file_path)
if os.path.exists(md_file_path):
print(f"Markdown file for {pdf_file} already exists at {md_file_path}. Skipping conversion.", flush=True)
return
command = ["mineru", "-p", pdf_file, "-o", output_dir, "-m", method]
try:
subprocess.run(command, check=True)
# 检查是否生成了 Markdown 文件
if not os.path.exists(md_file_path):
print(f"Conversion failed: Markdown file not found at {md_file_path}. Cleaning up folder...")
shutil.rmtree(target_dir) # 删除生成的文件夹
else:
print(f"Successfully converted {pdf_file} to markdown format in {target_dir}.")
except subprocess.CalledProcessError as e:
print(f"An error occurred during conversion: {e}")
# 如果发生错误且文件夹已生成,则删除文件夹
if os.path.exists(target_dir):
print(f"Cleaning up incomplete folder: {target_dir}")
shutil.rmtree(target_dir)
# new
def convert_pdf_to_md_new(self, pdf_dir, output_dir="output", method="auto"):
pdf_files = glob.glob(os.path.join(pdf_dir, "*.pdf"))
for pdf_file in pdf_files:
base_name = os.path.splitext(os.path.basename(pdf_file))[0]
target_dir = os.path.join(output_dir, base_name)
if os.path.exists(target_dir):
print(f"Folder for {pdf_file} already exists in {output_dir}. Skipping conversion.")
else:
command = ["mineru", "-p", pdf_file, "-o", output_dir, "-m", method]
try:
subprocess.run(command, check=True)
print(f"Successfully converted {pdf_file} to markdown format in {target_dir}.")
except subprocess.CalledProcessError as e:
print(f"An error occurred: {e}")
def batch_convert_pdfs(pdf_files, output_dir="output", method="auto", max_workers=None):
# Create a process pool to run the conversion in parallel
with ProcessPoolExecutor(max_workers=max_workers) as executor:
# Submit each PDF file to the process pool for conversion
futures = [executor.submit(convert_pdf_to_md, pdf, output_dir, method) for pdf in pdf_files]
# Optionally, you can monitor the status of each future as they complete
for future in futures:
try:
future.result() # This will raise any exceptions that occurred during the processing
except Exception as exc:
print(f"An error occurred during processing: {exc}")
def extract_information_from_md(self, md_text):
title_match = re.search(r'^(.*?)(\n\n|\Z)', md_text, re.DOTALL)
title = title_match.group(1).strip() if title_match else "N/A"
authors_match = re.search(
r'\n\n(.*?)(\n\n[aA][\s]*[bB][\s]*[sS][\s]*[tT][\s]*[rR][\s]*[aA][\s]*[cC][\s]*[tT][^\n]*\n\n)',
md_text,
re.DOTALL
)
authors = authors_match.group(1).strip() if authors_match else "N/A"
abstract_match = re.search(
r'(\n\n[aA][\s]*[bB][\s]*[sS][\s]*[tT][\s]*[rR][\s]*[aA][\s]*[cC][\s]*[tT][^\n]*\n\n)(.*?)(\n\n|\Z)',
md_text,
re.DOTALL
)
abstract = abstract_match.group(0).strip() if abstract_match else "N/A"
abstract = re.sub(r'^[aA]\s*[bB]\s*[sS]\s*[tT]\s*[rR]\s*[aA]\s*[cC]\s*[tT][^\w]*', '', abstract)
abstract = re.sub(r'^[^a-zA-Z]*', '', abstract)
introduction_match = re.search(
r'\n\n([1I][\.\- ]?\s*)?[Ii]\s*[nN]\s*[tT]\s*[rR]\s*[oO]\s*[dD]\s*[uU]\s*[cC]\s*[tT]\s*[iI]\s*[oO]\s*[nN][\.\- ]?\s*\n\n(.*?)'
r'(?=\n\n(?:([2I][I]|\s*2)[^\n]*?\n\n|\n\n(?:[2I][I][^\n]*?\n\n)))',
md_text,
re.DOTALL
)
introduction = introduction_match.group(2).strip() if introduction_match else "N/A"
main_content_match = re.search(
r'(.*?)(\n\n([3I][\.\- ]?\s*)?[Rr][Ee][Ff][Ee][Rr][Ee][Nn][Cc][Ee][Ss][^\n]*\n\n|\Z)',
md_text,
re.DOTALL
)
if main_content_match:
main_content = main_content_match.group(1).strip()
else:
main_content = "N/A"
extracted_data = {
"title": title,
"authors": authors,
"abstract": abstract,
"introduction": introduction,
"main_content": main_content
}
return extracted_data
def process_md_file(self, md_file_path, survey_id):
loader = UnstructuredMarkdownLoader(md_file_path)
data = loader.load()
assert len(data) == 1, "Expected exactly one document in the markdown file."
assert isinstance(data[0], Document), "The loaded data is not of type Document."
extracted_text = data[0].page_content
extracted_data = self.extract_information_from_md(extracted_text)
if len(extracted_data["abstract"]) < 10:
extracted_data["abstract"] = extracted_data['title']
title = os.path.splitext(os.path.basename(md_file_path))[0]
title_new = title.strip()
invalid_chars = ['<', '>', ':', '"', '/', '\\', '|', '?', '*', '_']
for char in invalid_chars:
title_new = title_new.replace(char, ' ')
os.makedirs(get_path('txt', survey_id), exist_ok=True)
with open(get_path('txt', survey_id, f'{title_new}.json'), 'w', encoding='utf-8') as f:
json.dump(extracted_data, f, ensure_ascii=False, indent=4)
return extracted_data['introduction']
def process_md_file_full(self, md_file_path, survey_id):
loader = UnstructuredMarkdownLoader(md_file_path)
data = loader.load()
assert len(data) == 1, "Expected exactly one document in the markdown file."
assert isinstance(data[0], Document), "The loaded data is not of type Document."
extracted_text = data[0].page_content
extracted_data = self.extract_information_from_md(extracted_text)
if len(extracted_data["abstract"]) < 10:
extracted_data["abstract"] = extracted_data['title']
title = os.path.splitext(os.path.basename(md_file_path))[0]
title_new = title.strip()
invalid_chars = ['<', '>', ':', '"', '/', '\\', '|', '?', '*', '_']
for char in invalid_chars:
title_new = title_new.replace(char, ' ')
os.makedirs(get_path('txt', survey_id), exist_ok=True)
with open(get_path('txt', survey_id, f'{title_new}.json'), 'w', encoding='utf-8') as f:
json.dump(extracted_data, f, ensure_ascii=False, indent=4)
return extracted_data['abstract'] + extracted_data['introduction'] + extracted_data['main_content']
def load_pdf(self, pdf_file, survey_id, mode):
"""
Parameters
----------
pdf_file : str
绝对路径 PDF 文件
survey_id : str
当前 survey ID,用于组织输出目录
mode : str
前端传递的模式,用于控制提取 intro 还是全文,
可能为 intro / full / auto / txt / ocr。
设计:
• mineru 只支持 auto / txt / ocr,这里统一用 'auto'(或保留传入的合法值),
与前端 intro/full 概念解耦。
• read_type 控制返回介绍还是全文:
- mode == 'intro' → 只返回 introduction
- 其它 → 返回全文(abstract+intro+main)
"""
valid_mineru_methods = ['auto', 'txt', 'ocr']
if mode in valid_mineru_methods:
mineru_method = mode
read_type = 'full'
else:
mineru_method = 'auto' # 默认的 mineru 解析方式
read_type = 'intro' if mode == 'intro' else 'full'
base_name = os.path.splitext(os.path.basename(pdf_file))[0]
target_dir = os.path.join(get_path('md', survey_id), base_name)
# mineru 会把 md 文件放到 <target_dir>/<mineru_method>/<name>.md
md_file_path = os.path.join(target_dir, mineru_method, f"{base_name}.md")
print("The md file path is: ", md_file_path)
if os.path.exists(md_file_path):
print(f"Markdown file for {pdf_file} already exists at {md_file_path}. Skipping conversion.", flush=True)
if read_type == 'intro':
return self.process_md_file(md_file_path, survey_id)
else:
return self.process_md_file_full(md_file_path, survey_id)
command = ["mineru", "-p", pdf_file, "-o", get_path('md', survey_id), "-m", mineru_method]
try:
subprocess.run(command, check=True)
# 检查是否生成了 Markdown 文件
if not os.path.exists(md_file_path):
print(f"Conversion failed: Markdown file not found at {md_file_path}. Cleaning up folder...")
shutil.rmtree(target_dir) # 删除生成的文件夹
return None
else:
print(f"Successfully converted {pdf_file} to markdown format in {target_dir}.")
if read_type == 'intro':
return self.process_md_file(md_file_path, survey_id)
else:
return self.process_md_file_full(md_file_path, survey_id)
except subprocess.CalledProcessError as e:
print(f"An error occurred during conversion: {e}")
# 如果发生错误且文件夹已生成,则删除文件夹
if os.path.exists(target_dir):
print(f"Cleaning up incomplete folder: {target_dir}")
shutil.rmtree(target_dir)
return None
def load_pdf_new(self, pdf_dir, survey_id):
pdf_files = glob.glob(os.path.join(pdf_dir, "*.pdf"))
for pdf_file in pdf_files:
base_name = os.path.splitext(os.path.basename(pdf_file))[0]
target_dir = os.path.join(get_path('md', survey_id), base_name)
if os.path.exists(target_dir):
print(f"Folder for {pdf_file} already exists in {get_path('md', survey_id)}. Skipping conversion.")
else:
command = ["mineru", "-p", pdf_file, "-o", get_path('md', survey_id), "-m", "auto"]
try:
subprocess.run(command, check=True)
print(f"Successfully converted {pdf_file} to markdown format in {target_dir}.")
except subprocess.CalledProcessError as e:
print(f"An error occurred: {e}")
def parallel_load_pdfs(self, pdf_files, survey_id, max_workers=4):
# Create a process pool to run the conversion in parallel
with ProcessPoolExecutor(max_workers=max_workers) as executor:
# Submit each PDF file to the process pool for conversion
futures = [executor.submit(self.load_pdf, pdf, survey_id, "auto") for pdf in pdf_files]
# Optionally, you can monitor the status of each future as they complete
for future in futures:
try:
future.result() # This will raise any exceptions that occurred during the processing
except Exception as exc:
print(f"An error occurred during processing: {exc}")
def ensure_non_empty_introduction(self, introduction, full_text):
if len(introduction) < 50:
return full_text[:1000]
return introduction
def extract_information_from_md_new(self, md_text):
# Title extraction
title_match = re.search(r'^(.*?)(\n\n|\Z)', md_text, re.DOTALL)
title = title_match.group(1).strip() if title_match else "N/A"
# Authors extraction
authors_match = re.search(
r'\n\n(.*?)(\n\n[aA][\s]*[bB][\s]*[sS][\s]*[tT][\s]*[rR][\s]*[aA][\s]*[cC][\s]*[tT][^\n]*\n\n)',
md_text,
re.DOTALL
)
authors = authors_match.group(1).strip() if authors_match else "N/A"
# Abstract extraction
abstract_match = re.search(
r'(\n\n[aA][\s]*[bB][\s]*[sS][\s]*[tT][\s]*[rR][\s]*[aA][\s]*[cC][\s]*[tT][^\n]*\n\n)(.*?)(\n\n|\Z)',
md_text,
re.DOTALL
)
abstract = abstract_match.group(0).strip() if abstract_match else "N/A"
abstract = re.sub(r'^[aA]\s*[bB]\s*[sS]\s*[tT]\s*[rR]\s*[aA]\s*[cC]\s*[tT][^\w]*', '', abstract)
abstract = re.sub(r'^[^a-zA-Z]*', '', abstract)
# Introduction extraction
introduction_match = re.search(
r'\n\n([1I][\.\- ]?\s*)?[Ii]\s*[nN]\s*[tT]\s*[rR]\s*[oO]\s*[dD]\s*[uU]\s*[cC]\s*[tT]\s*[iI]\s*[oO]\s*[nN][\.\- ]?\s*\n\n(.*?)'
r'(?=\n\n(?:([2I][I]|\s*2)[^\n]*?\n\n|\n\n(?:[2I][I][^\n]*?\n\n)))',
md_text,
re.DOTALL
)
introduction = introduction_match.group(2).strip() if introduction_match else "N/A"
# Main content extraction
main_content_match = re.search(
r'(.*?)(\n\n([3I][\.\- ]?\s*)?[Rr][Ee][Ff][Ee][Rr][Ee][Nn][Cc][Ee][Ss][^\n]*\n\n|\Z)',
md_text,
re.DOTALL
)
if main_content_match:
main_content = main_content_match.group(1).strip()
else:
main_content = "N/A"
extracted_data = {
"title": title,
"authors": authors,
"abstract": abstract,
"introduction": introduction,
"main_content": main_content
}
return extracted_data |