Spaces:
Runtime error
Runtime error
File size: 2,277 Bytes
797b64f 4045aa3 797b64f a94eec7 4045aa3 52ccae8 5f76d85 797b64f 58572c5 797b64f ecda335 797b64f 52ccae8 ecda335 797b64f 52ccae8 797b64f cafa65e 797b64f dc7d2f7 797b64f 35906fb 797b64f ee7e9b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
import torch
import re
import gradio as gr
from pathlib import Path
from transformers import AutoTokenizer, AutoFeatureExtractor, VisionEncoderDecoderModel
# Pattern to ignore all the text after 2 or more full stops
regex_pattern = "[.]{2,}"
#sample = val_dataset[800]
#model = model.cuda()
#print(tokenizer.decode(model.generate(sample['pixel_values'].unsqueeze(0).cuda())[0]).replace('<|endoftext|>', '').split('\n')[0],'\n\n\n')
def post_process(text):
try:
text = text.strip()
text = re.split(regex_pattern, text)[0]
except Exception as e:
print(e)
pass
return text
def predict(image, max_length=64, num_beams=4):
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
with torch.no_grad():
text = model.generate(pixel_values.unsqueeze(0).cpu())
text = tokenizer.decode(text.replace('<|endoftext|>', '').split('\n')[0],'\n\n\n')
# output_ids = model.generate(
# pixel_values,
# max_length=max_length,
# num_beams=num_beams,
# return_dict_in_generate=True,
#).sequences
#preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
#pred = post_process(preds[0])
return text
model_path = "team-indain-image-caption/hindi-image-captioning"
device = torch.device("cuda:0" if torch.cuda.is_available() else"cpu")
# Load model.
model = VisionEncoderDecoderModel.from_pretrained(model_path)
model.to(device)
print("Loaded model")
feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
print("Loaded feature_extractor")
tokenizer = AutoTokenizer.from_pretrained(model_path)
#if model.decoder.name_or_path == "gpt2":
# tokenizer.pad_token = tokenizer.bos_token
print("Loaded tokenizer")
title = "Hindi Image Captioning"
description = ""
input = gr.inputs.Image(type="pil")
#example_images = sorted([f.as_posix() for f in Path("examples").glob("*.jpg")])
#print(f"Loaded {len(example_images)} example images")
interface = gr.Interface(
fn=predict,
inputs=input,
outputs="textbox",
title=title,
description=description,
#examples=example_images,
live=True,
)
interface.launch()
|