File size: 3,449 Bytes
ec9ef8b
4e86ef1
54210ca
 
c17ba77
4e86ef1
b5d991e
4e86ef1
b5d991e
 
 
 
 
 
4e86ef1
f24bed6
4e86ef1
c17ba77
4e86ef1
 
 
 
 
d002017
d087072
d002017
436b052
c17ba77
 
c8d5ecf
 
e030ac0
54210ca
 
 
 
 
e030ac0
c17ba77
 
54210ca
c17ba77
 
69beb29
 
 
 
 
ffc0ad6
 
69beb29
 
 
 
c17ba77
69beb29
 
 
c17ba77
 
 
 
 
 
 
 
 
 
 
 
 
 
4e86ef1
 
 
 
e030ac0
 
 
 
 
04883bf
4e86ef1
 
 
abad0fd
5fb63f2
 
69beb29
4004cf7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import TapexTokenizer, BartForConditionalGeneration
import pandas as pd
import torch
#import pkg_resources

'''
# Get a list of installed packages and their versions
installed_packages = {pkg.key: pkg.version for pkg in pkg_resources.working_set}

# Print the list of packages
for package, version in installed_packages.items():
    print(f"{package}=={version}")
'''

# Load the chatbot model
chatbot_model_name = "microsoft/DialoGPT-medium" #"gpt2"
chatbot_tokenizer = AutoTokenizer.from_pretrained(chatbot_model_name)
chatbot_model = AutoModelForCausalLM.from_pretrained(chatbot_model_name)


# Load the SQL Model
#wikisql take longer to process
#model_name = "microsoft/tapex-large-finetuned-wikisql"  # You can change this to any other model from the list above
#model_name = "microsoft/tapex-base-finetuned-wikisql"
#model_name = "microsoft/tapex-base-finetuned-wtq"
#model_name = "microsoft/tapex-large-finetuned-wtq"
model_name = "google/tapas-base-finetuned-wtq"
sql_tokenizer = TapexTokenizer.from_pretrained(model_name)
sql_model = BartForConditionalGeneration.from_pretrained(model_name)

data = {
    "year": [1896, 1900, 1904, 2004, 2008, 2012],
    "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"]
}
table = pd.DataFrame.from_dict(data)

new_chat = True

def chatbot_response(user_message):

    global new_chat
    # Check if the user input is a question
    is_question = "?" in user_message

    if is_question:  
        # If the user input is a question, use TAPEx for question-answering
        #inputs = user_query
        encoding = sql_tokenizer(table=table, query=user_message, return_tensors="pt")
        outputs = sql_model.generate(**encoding)
        response = sql_tokenizer.batch_decode(outputs, skip_special_tokens=True)
    else:
        # Generate chatbot response using the chatbot model
        '''
        inputs = chatbot_tokenizer.encode("User: " + user_message, return_tensors="pt")
        outputs = chatbot_model.generate(inputs, max_length=100, num_return_sequences=1)
        response = chatbot_tokenizer.decode(outputs[0], skip_special_tokens=True)
        '''
        # encode the new user input, add the eos_token and return a tensor in Pytorch
        new_user_input_ids = chatbot_tokenizer.encode(input(">> User:") + chatbot_tokenizer.eos_token, return_tensors='pt')
    
        # append the new user input tokens to the chat history
        bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if new_chat is False else new_user_input_ids
    
        # generated a response while limiting the total chat history to 1000 tokens, 
        chat_history_ids = chatbot_model.generate(bot_input_ids, max_length=1000, pad_token_id=chatbot_tokenizer.eos_token_id)

        response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)

    new_chat = False
    
    return response

# Define the chatbot and SQL execution interfaces using Gradio
chatbot_interface = gr.Interface(
    fn=chatbot_response,
    inputs=gr.Textbox(prompt="You:"),
    outputs=gr.Textbox(),
    live=True,
    capture_session=True,
    title="ST Chatbot",
    description="Type your message in the box above, and the chatbot will respond.",
)

# Launch the Gradio interface
if __name__ == "__main__":
    chatbot_interface.launch()