Spaces:
Runtime error
Runtime error
File size: 6,365 Bytes
fa6856c 05bf9d8 3d0f60e fa6856c f61a558 fa6856c 3d0f60e fa6856c 725dc81 fa6856c 725dc81 fa6856c 5d23840 fa6856c 5d23840 fa6856c 5d23840 fa6856c 725dc81 fa6856c 817f3cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import sys
import torch
from peft import PeftModel, PeftModelForCausalLM, LoraConfig
import transformers
import gradio as gr
import argparse
import warnings
import os
from utils import StreamPeftGenerationMixin,StreamLlamaForCausalLM
# assert (
# "LlamaTokenizer" in transformers._import_structure["models.llama"]
# ), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
parser = argparse.ArgumentParser()
TOT_CUDA="0" #Upgrade bitsandbytes to the latest version to enable balanced loading of multiple GPUs, for example: pip install bitsandbytes==0.39.0
BASE_MODEL="ziqingyang/chinese-llama-2-13b"
LORA_PATH="teachyourselfcoding/llama-2-13b-22sep"
USE_LOCAL=1 # 1: use local model, 0: use huggingface model
TYPE_WRITER=1 # whether output streamly
args = parser.parse_args()
print(args)
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
LOAD_8BIT = True
# fix the path for local checkpoint
lora_bin_path = os.path.join(LORA_PATH, "adapter_model.bin")
print(lora_bin_path)
if not os.path.exists(lora_bin_path) and USE_LOCAL:
pytorch_bin_path = os.path.join(LORA_PATH, "pytorch_model.bin")
print(pytorch_bin_path)
if os.path.exists(pytorch_bin_path):
os.rename(pytorch_bin_path, lora_bin_path)
warnings.warn(
"The file name of the lora checkpoint'pytorch_model.bin' is replaced with 'adapter_model.bin'"
)
else:
assert ('Checkpoint is not Found!')
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except:
pass
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=LOAD_8BIT,
torch_dtype=torch.float16,
device_map="auto", #device_map={"": 0},
)
model = StreamPeftGenerationMixin.from_pretrained(
model, LORA_PATH, torch_dtype=torch.float16, device_map="auto", #device_map={"": 0}
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
device_map={"": device},
torch_dtype=torch.float16,
)
model = StreamPeftGenerationMixin.from_pretrained(
model,
LORA_PATH,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
)
model = StreamPeftGenerationMixin.from_pretrained(
model,
LORA_PATH,
device_map={"": device},
)
def generate_prompt(instruction, input=None):
if input:
return f"""你是一个乐于助人的中文助手,请你回答一下以下问题
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
else:
return f"""你是一个乐于助人的中文助手,请你回答一下以下问题
### Instruction:
{instruction}
### Response:"""
if not LOAD_8BIT:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
def evaluate(
input,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
min_new_tokens=1,
repetition_penalty=2.0,
**kwargs,
):
prompt = generate_prompt(input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
bos_token_id=1,
eos_token_id=2,
pad_token_id=0,
max_new_tokens=max_new_tokens, # max_length=max_new_tokens+input_sequence
min_new_tokens=min_new_tokens, # min_length=min_new_tokens+input_sequence
**kwargs,
)
with torch.no_grad():
if TYPE_WRITER:
for generation_output in model.stream_generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=False,
repetition_penalty=float(repetition_penalty),
):
outputs = tokenizer.batch_decode(generation_output)
show_text = "\n--------------------------------------------\n".join(
[output.split("### Response:")[1].strip().replace('�','')+" ▌" for output in outputs]
)
# if show_text== '':
# yield last_show_text
# else:
yield show_text
yield outputs[0].split("### Response:")[1].strip().replace('�','')
else:
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=False,
repetition_penalty=1.3,
)
output = generation_output.sequences[0]
output = tokenizer.decode(output).split("### Response:")[1].strip()
print(output)
yield output
gr.Interface(
fn=evaluate,
inputs=[
gr.components.Textbox(
lines=2, label="Input", placeholder="Tell me about alpacas."
),
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
gr.components.Slider(minimum=1, maximum=10, step=1, value=4, label="Beams Number"),
gr.components.Slider(
minimum=1, maximum=2000, step=1, value=256, label="Max New Tokens"
),
gr.components.Slider(
minimum=1, maximum=300, step=1, value=1, label="Min New Tokens"
),
gr.components.Slider(
minimum=0.1, maximum=10.0, step=0.1, value=2.0, label="Repetition Penalty"
),
],
outputs=[
gr.inputs.Textbox(
lines=25,
label="Output",
)
],
title="HKLawGPT",
description="",
).queue().launch()
|