File size: 6,365 Bytes
fa6856c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05bf9d8
3d0f60e
 
 
 
 
fa6856c
 
f61a558
fa6856c
 
3d0f60e
fa6856c
 
 
725dc81
fa6856c
725dc81
 
fa6856c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d23840
fa6856c
 
 
 
 
 
 
 
 
5d23840
fa6856c
 
 
 
 
 
 
 
 
5d23840
fa6856c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
725dc81
fa6856c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
817f3cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import sys
import torch
from peft import PeftModel, PeftModelForCausalLM, LoraConfig
import transformers
import gradio as gr
import argparse
import warnings
import os
from utils import StreamPeftGenerationMixin,StreamLlamaForCausalLM
# assert (
#     "LlamaTokenizer" in transformers._import_structure["models.llama"]
# ), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig

parser = argparse.ArgumentParser()
TOT_CUDA="0" #Upgrade bitsandbytes to the latest version to enable balanced loading of multiple GPUs, for example: pip install bitsandbytes==0.39.0
BASE_MODEL="ziqingyang/chinese-llama-2-13b"
LORA_PATH="teachyourselfcoding/llama-2-13b-22sep"
USE_LOCAL=1 # 1: use local model, 0: use huggingface model
TYPE_WRITER=1 # whether output streamly

args = parser.parse_args()
print(args)
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)

LOAD_8BIT = True



# fix the path for local checkpoint
lora_bin_path = os.path.join(LORA_PATH, "adapter_model.bin")
print(lora_bin_path)
if not os.path.exists(lora_bin_path) and USE_LOCAL:
    pytorch_bin_path = os.path.join(LORA_PATH, "pytorch_model.bin")
    print(pytorch_bin_path)
    if os.path.exists(pytorch_bin_path):
        os.rename(pytorch_bin_path, lora_bin_path)
        warnings.warn(
            "The file name of the lora checkpoint'pytorch_model.bin' is replaced with 'adapter_model.bin'"
        )
    else:
        assert ('Checkpoint is not Found!')

if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

try:
    if torch.backends.mps.is_available():
        device = "mps"
except:
    pass

if device == "cuda":
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL,
        load_in_8bit=LOAD_8BIT,
        torch_dtype=torch.float16,
        device_map="auto", #device_map={"": 0},
    )
    model = StreamPeftGenerationMixin.from_pretrained(
        model, LORA_PATH, torch_dtype=torch.float16, device_map="auto", #device_map={"": 0}
    )
elif device == "mps":
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
    model = StreamPeftGenerationMixin.from_pretrained(
        model,
        LORA_PATH,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
else:
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
    )
    model = StreamPeftGenerationMixin.from_pretrained(
        model,
        LORA_PATH,
        device_map={"": device},
    )


def generate_prompt(instruction, input=None):
    if input:
        return f"""你是一个乐于助人的中文助手,请你回答一下以下问题

### Instruction:
{instruction}

### Input:
{input}

### Response:"""
    else:
        return f"""你是一个乐于助人的中文助手,请你回答一下以下问题

### Instruction:
{instruction}

### Response:"""


if not LOAD_8BIT:
    model.half()  # seems to fix bugs for some users.

model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
    model = torch.compile(model)


def evaluate(
    input,
    temperature=0.1,
    top_p=0.75,
    top_k=40,
    num_beams=4,
    max_new_tokens=128,
    min_new_tokens=1,
    repetition_penalty=2.0,
    **kwargs,
):
    prompt = generate_prompt(input)
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].to(device)
    generation_config = GenerationConfig(
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        num_beams=num_beams,
        bos_token_id=1,
        eos_token_id=2,
        pad_token_id=0,
        max_new_tokens=max_new_tokens, # max_length=max_new_tokens+input_sequence
        min_new_tokens=min_new_tokens, # min_length=min_new_tokens+input_sequence
        **kwargs,
    )
    with torch.no_grad():
        if TYPE_WRITER:
            for generation_output in model.stream_generate(
                input_ids=input_ids,
                generation_config=generation_config,
                return_dict_in_generate=True,
                output_scores=False,
                repetition_penalty=float(repetition_penalty),
            ):
                outputs = tokenizer.batch_decode(generation_output)
                show_text = "\n--------------------------------------------\n".join(
                    [output.split("### Response:")[1].strip().replace('�','')+" ▌" for output in outputs]
                )
                # if show_text== '':
                #     yield last_show_text
                # else:
                yield show_text
            yield outputs[0].split("### Response:")[1].strip().replace('�','')
        else:
            generation_output = model.generate(
                input_ids=input_ids,
                generation_config=generation_config,
                return_dict_in_generate=True,
                output_scores=False,
                repetition_penalty=1.3,
            )
            output = generation_output.sequences[0]
            output = tokenizer.decode(output).split("### Response:")[1].strip()
            print(output)
            yield output


gr.Interface(
    fn=evaluate,
    inputs=[
        gr.components.Textbox(
            lines=2, label="Input", placeholder="Tell me about alpacas."
        ),
        gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
        gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
        gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
        gr.components.Slider(minimum=1, maximum=10, step=1, value=4, label="Beams Number"),
        gr.components.Slider(
            minimum=1, maximum=2000, step=1, value=256, label="Max New Tokens"
        ),
        gr.components.Slider(
            minimum=1, maximum=300, step=1, value=1, label="Min New Tokens"
        ),
        gr.components.Slider(
            minimum=0.1, maximum=10.0, step=0.1, value=2.0, label="Repetition Penalty"
        ),
    ],
    outputs=[
        gr.inputs.Textbox(
            lines=25,
            label="Output",
        )
    ],
    title="HKLawGPT",
    description="",
).queue().launch()