Spaces:
Runtime error
Runtime error
File size: 5,987 Bytes
fa6856c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import sys
import torch
from peft import PeftModel
import transformers
import gradio as gr
import argparse
import warnings
import os
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="decapoda-research/llama-7b-hf")
parser.add_argument("--lora_path", type=str, default="./lora-Vicuna/checkpoint-final")
parser.add_argument("--use_local", type=int, default=1)
args = parser.parse_args()
tokenizer = LlamaTokenizer.from_pretrained(args.model_path)
LOAD_8BIT = True
BASE_MODEL = args.model_path
LORA_WEIGHTS = args.lora_path
# fix the path for local checkpoint
lora_bin_path = os.path.join(args.lora_path, "adapter_model.bin")
print(lora_bin_path)
if not os.path.exists(lora_bin_path) and args.use_local:
pytorch_bin_path = os.path.join(args.lora_path, "pytorch_model.bin")
print(pytorch_bin_path)
if os.path.exists(pytorch_bin_path):
os.rename(pytorch_bin_path, lora_bin_path)
warnings.warn("The file name of the lora checkpoint'pytorch_model.bin' is replaced with 'adapter_model.bin'")
else:
assert ('Checkpoint is not Found!')
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except:
pass
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=LOAD_8BIT,
torch_dtype=torch.float16,
device_map="auto", #device_map={"": 0},
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
torch_dtype=torch.float16,
device_map="auto", #device_map={"": 0},
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
)
def generate_prompt(instruction, input=None):
if input:
return f"""The following is a conversation between an AI assistant called Assistant and a human user called User.
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
else:
return f"""The following is a conversation between an AI assistant called Assistant and a human user called User.
### Instruction:
{instruction}
### Response:"""
if not LOAD_8BIT:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
def interaction(
input,
history,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
repetition_penalty=1.0,
max_memory=256,
**kwargs,
):
now_input = input
history = history or []
if len(history) != 0:
input = "\n".join(["User:" + i[0]+"\n"+"Assistant:" + i[1] for i in history]) + "\n" + "User:" + input
if len(input) > max_memory:
input = input[-max_memory:]
print(input)
print(len(input))
prompt = generate_prompt(input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
repetition_penalty=float(repetition_penalty),
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
output = output.split("### Response:")[1].strip()
output = output.replace("Belle", "Vicuna")
if 'User:' in output:
output = output.split("User:")[0]
history.append((now_input, output))
print(history)
return history, history
chatbot = gr.Chatbot().style(color_map=("green", "pink"))
demo = gr.Interface(
fn=interaction,
inputs=[
gr.components.Textbox(
lines=2, label="Input", placeholder="Tell me about alpacas."
),
"state",
gr.components.Slider(minimum=0, maximum=1, value=1.0, label="Temperature"),
gr.components.Slider(minimum=0, maximum=1, value=0.9, label="Top p"),
gr.components.Slider(minimum=0, maximum=100, step=1, value=60, label="Top k"),
gr.components.Slider(minimum=1, maximum=5, step=1, value=2, label="Beams"),
gr.components.Slider(
minimum=1, maximum=2000, step=1, value=128, label="Max new tokens"
),
gr.components.Slider(
minimum=0.1, maximum=10.0, step=0.1, value=2.0, label="Repetition Penalty"
),
gr.components.Slider(
minimum=0, maximum=2000, step=1, value=256, label="max memory"
),
],
outputs=[chatbot, "state"],
allow_flagging="auto",
title="Chinese-Vicuna 中文小羊驼",
description="中文小羊驼由各种高质量的开源instruction数据集,结合Alpaca-lora的代码训练而来,模型基于开源的llama7B,主要贡献是对应的lora模型。由于代码训练资源要求较小,希望为llama中文lora社区做一份贡献。",
)
demo.queue().launch(share=True, inbrowser=True) |