File size: 5,987 Bytes
fa6856c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import sys
import torch
from peft import PeftModel
import transformers
import gradio as gr
import argparse
import warnings
import os


assert (
    "LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig

parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="decapoda-research/llama-7b-hf")
parser.add_argument("--lora_path", type=str, default="./lora-Vicuna/checkpoint-final")
parser.add_argument("--use_local", type=int, default=1)
args = parser.parse_args()

tokenizer = LlamaTokenizer.from_pretrained(args.model_path)

LOAD_8BIT = True
BASE_MODEL = args.model_path
LORA_WEIGHTS = args.lora_path

# fix the path for local checkpoint
lora_bin_path = os.path.join(args.lora_path, "adapter_model.bin")
print(lora_bin_path)
if not os.path.exists(lora_bin_path) and args.use_local:
    pytorch_bin_path = os.path.join(args.lora_path, "pytorch_model.bin")
    print(pytorch_bin_path)
    if os.path.exists(pytorch_bin_path):
        os.rename(pytorch_bin_path, lora_bin_path)
        warnings.warn("The file name of the lora checkpoint'pytorch_model.bin' is replaced with 'adapter_model.bin'")
    else:
        assert ('Checkpoint is not Found!')
if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

try:
    if torch.backends.mps.is_available():
        device = "mps"
except:
    pass

if device == "cuda":
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL,
        load_in_8bit=LOAD_8BIT,
        torch_dtype=torch.float16,
        device_map="auto", #device_map={"": 0},
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        torch_dtype=torch.float16,
        device_map="auto", #device_map={"": 0},
    )
elif device == "mps":
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
else:
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        device_map={"": device},
    )

def generate_prompt(instruction, input=None):
    if input:
        return f"""The following is a conversation between an AI assistant called Assistant and a human user called User.

### Instruction:
{instruction}

### Input:
{input}

### Response:"""
    else:
        return f"""The following is a conversation between an AI assistant called Assistant and a human user called User.

### Instruction:
{instruction}

### Response:"""

if not LOAD_8BIT:
    model.half()  # seems to fix bugs for some users.

model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
    model = torch.compile(model)

def interaction(
    input,
    history,
    temperature=0.1,
    top_p=0.75,
    top_k=40,
    num_beams=4,
    max_new_tokens=128,
    repetition_penalty=1.0,
    max_memory=256,
    **kwargs,
):
    now_input = input
    history = history or []
    if len(history) != 0:
        input = "\n".join(["User:" + i[0]+"\n"+"Assistant:" + i[1] for i in history]) + "\n" + "User:" + input
        if len(input) > max_memory:
            input = input[-max_memory:]
    print(input)
    print(len(input))
    prompt = generate_prompt(input)
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].to(device)
    generation_config = GenerationConfig(
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        num_beams=num_beams,
        **kwargs,
    )
    with torch.no_grad():
        generation_output = model.generate(
            input_ids=input_ids,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True,
            max_new_tokens=max_new_tokens,
            repetition_penalty=float(repetition_penalty),
        )
    s = generation_output.sequences[0]
    output = tokenizer.decode(s)
    output = output.split("### Response:")[1].strip()
    output = output.replace("Belle", "Vicuna")
    if 'User:' in output:
        output = output.split("User:")[0]
    history.append((now_input, output))
    print(history)
    return history, history

chatbot = gr.Chatbot().style(color_map=("green", "pink"))
demo = gr.Interface(
    fn=interaction,
    inputs=[
        gr.components.Textbox(
            lines=2, label="Input", placeholder="Tell me about alpacas."
        ),
        "state",
        gr.components.Slider(minimum=0, maximum=1, value=1.0, label="Temperature"),
        gr.components.Slider(minimum=0, maximum=1, value=0.9, label="Top p"),
        gr.components.Slider(minimum=0, maximum=100, step=1, value=60, label="Top k"),
        gr.components.Slider(minimum=1, maximum=5, step=1, value=2, label="Beams"),
        gr.components.Slider(
            minimum=1, maximum=2000, step=1, value=128, label="Max new tokens"
        ),
        gr.components.Slider(
            minimum=0.1, maximum=10.0, step=0.1, value=2.0, label="Repetition Penalty"
        ),
        gr.components.Slider(
            minimum=0, maximum=2000, step=1, value=256, label="max memory"
        ),
    ],
    outputs=[chatbot, "state"],
    allow_flagging="auto",
    title="Chinese-Vicuna 中文小羊驼",
    description="中文小羊驼由各种高质量的开源instruction数据集,结合Alpaca-lora的代码训练而来,模型基于开源的llama7B,主要贡献是对应的lora模型。由于代码训练资源要求较小,希望为llama中文lora社区做一份贡献。",
)
demo.queue().launch(share=True, inbrowser=True)