File size: 35,353 Bytes
fa6856c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
import logging
import sys
import os
import torch
import json
from typing import Optional, Tuple, Union, List, Callable
from transformers import LlamaForCausalLM
from transformers.generation.logits_process import LogitsProcessor
from transformers.generation.beam_search import BeamSearchScorer
from transformers.deepspeed import is_deepspeed_zero3_enabled
from transformers.generation.utils import (
    LogitsProcessorList,
    StoppingCriteriaList,
    GenerationConfig,
    GenerationMixin,
)
import warnings
from peft import PeftModel, PeftModelForCausalLM, LoraConfig
import peft
import torch.distributed as dist
from torch import nn
import copy
from accelerate.hooks import (
    AlignDevicesHook,
    add_hook_to_module,
    remove_hook_from_submodules,
)
from accelerate.utils import get_balanced_memory
from huggingface_hub import hf_hub_download
from accelerate import dispatch_model, infer_auto_device_map
from peft.utils import PeftType, set_peft_model_state_dict

def printf(*args,**kargs):
    if os.environ.get('DEBUG',False):
        end = '\n'
        if 'end' in kargs:
            end = kargs['end']
        print(*args, end=end, flush=True)

class ColorFormatter(logging.Formatter):

    grey = "\x1b[38;20m"
    blue = "\x1b[34;20m"
    yellow = "\x1b[33;20m"
    red = "\x1b[31;20m"
    bold_red = "\x1b[31;1m"
    reset = "\x1b[0m"

    def __init__(self, fmt):
        super().__init__(fmt)
        self.FORMATS = {
            logging.DEBUG: self.grey + fmt + self.reset,
            logging.INFO: self.blue + fmt + self.reset,
            logging.WARNING: self.yellow + fmt + self.reset,
            logging.ERROR: self.red + fmt + self.reset,
            logging.CRITICAL: self.bold_red + fmt + self.reset
        }

    def format(self, record):
        log_fmt = self.FORMATS.get(record.levelno)
        formatter = logging.Formatter(log_fmt)
        return formatter.format(record)

def set_console_logger(name):
    logger = logging.getLogger(name)
    logger.setLevel(logging.DEBUG)
    consoleHandler = logging.StreamHandler(sys.stdout)
    consoleHandler.setLevel(logging.INFO)
    consoleHandler.setFormatter(ColorFormatter("%(asctime)s | %(levelname)s %(message)s"))
    logger.addHandler(consoleHandler)
    return logger

def set_file_logger(name, dir, use_console=False):
    logger = logging.getLogger(name)
    logger.setLevel(logging.DEBUG)
    os.makedirs(dir, exist_ok=True)

    if use_console:
        logger.propagate = False # disable default handler
        consoleHandler = logging.StreamHandler(sys.stdout)
        consoleHandler.setLevel(logging.INFO)
        consoleHandler.setFormatter(ColorFormatter("%(asctime)s | %(levelname)s %(message)s"))
        logger.addHandler(consoleHandler)

    fileHandler = logging.FileHandler(os.path.join(dir,'session.log'), mode='a') 
    fileHandler.setLevel(logging.INFO)
    fileHandler.setFormatter(logging.Formatter("%(asctime)s | %(levelname)s %(message)s"))
    logger.addHandler(fileHandler)
    return logger

def to_jsonl(data, path):
    with open(path, 'a') as f:
        for line in data:
            f.write(json.dumps(line,ensure_ascii=False)+'\n')

def from_json(path):
    return json.load(open(path))

def from_jsonl(path):
    return [json.loads(line) for line in open(path, 'r') ]

def to_json(data, path):
    json.dump(data, open(path, 'w'), ensure_ascii=False)

class StreamGenerationMixin(GenerationMixin):
    # support for streamly generation
    # TODO: group_beam_search
    @torch.no_grad()
    def stream_generate(
        self,
        input_ids: Optional[torch.Tensor] = None,
        generation_config: Optional[GenerationConfig] = None,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        prefix_allowed_tokens_fn: Optional[
            Callable[[int, torch.Tensor], List[int]]
        ] = None,
        **kwargs,
    ):
        if is_deepspeed_zero3_enabled() and dist.world_size() > 1:
            synced_gpus = True
        else:
            synced_gpus = False

        if kwargs.get("attention_mask", None) is not None:
            # concat prompt attention mask
            prefix_attention_mask = torch.ones(
                kwargs["input_ids"].shape[0], self.peft_config.num_virtual_tokens
            ).to(kwargs["input_ids"].device)
            kwargs["attention_mask"] = torch.cat(
                (prefix_attention_mask, kwargs["attention_mask"]), dim=1
            )
        if kwargs.get("position_ids", None) is not None:
            warnings.warn(
                "Position ids are not supported for parameter efficient tuning. Ignoring position ids."
            )
            kwargs["position_ids"] = None
        if kwargs.get("token_type_ids", None) is not None:
            warnings.warn(
                "Token type ids are not supported for parameter efficient tuning. Ignoring token type ids"
            )
            kwargs["token_type_ids"] = None

        batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]

        if generation_config is None:
            generation_config = self.generation_config
        generation_config = copy.deepcopy(generation_config)
        model_kwargs = generation_config.update(**kwargs)

        bos_token_id, eos_token_id, pad_token_id = (
            generation_config.bos_token_id,
            generation_config.eos_token_id,
            generation_config.pad_token_id,
        )

        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]

        has_default_max_length = (
            kwargs.get("max_length") is None
            and generation_config.max_length is not None
        )
        if has_default_max_length and generation_config.max_new_tokens is None:
            warnings.warn(
                f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
                "This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
                " recommend using `max_new_tokens` to control the maximum length of the generation.",
                UserWarning,
            )
        elif generation_config.max_new_tokens is not None:
            generation_config.max_length = (
                generation_config.max_new_tokens + input_ids_seq_length
            )
        if generation_config.min_new_tokens is not None:
            generation_config.min_length = (
                generation_config.min_new_tokens + input_ids_seq_length
            )

        if input_ids_seq_length >= generation_config.max_length:
            input_ids_string = (
                "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
            )

        # 2. Set generation parameters if not already defined
        logits_processor = (
            logits_processor if logits_processor is not None else LogitsProcessorList()
        )
        stopping_criteria = (
            stopping_criteria
            if stopping_criteria is not None
            else StoppingCriteriaList()
        )
        # 7. determine generation mode
        is_constraint_gen_mode = (
            generation_config.constraints is not None or generation_config.force_words_ids is not None
        )

        is_contrastive_search_gen_mode = (
            generation_config.top_k is not None
            and generation_config.top_k > 1
            and generation_config.do_sample is False
            and generation_config.penalty_alpha is not None
            and generation_config.penalty_alpha > 0
        )

        is_greedy_gen_mode = (
            (generation_config.num_beams == 1)
            and (generation_config.num_beam_groups == 1)
            and generation_config.do_sample is False
            and not is_constraint_gen_mode
            and not is_contrastive_search_gen_mode
        )
        # beam=1 and do_sample=True
        is_sample_gen_mode = (
            (generation_config.num_beams == 1)
            and (generation_config.num_beam_groups == 1)
            and generation_config.do_sample is True
            and not is_constraint_gen_mode
            and not is_contrastive_search_gen_mode
        )
        is_beam_gen_mode = (
            (generation_config.num_beams > 1)
            and (generation_config.num_beam_groups == 1)
            and generation_config.do_sample is False
            and not is_constraint_gen_mode
            and not is_contrastive_search_gen_mode
        )
        is_beam_sample_gen_mode = (
            (generation_config.num_beams > 1)
            and (generation_config.num_beam_groups == 1)
            and generation_config.do_sample is True
            and not is_constraint_gen_mode
            and not is_contrastive_search_gen_mode
        )
        is_group_beam_gen_mode = (
            (generation_config.num_beams > 1)
            and (generation_config.num_beam_groups > 1)
            and not is_constraint_gen_mode
            and not is_contrastive_search_gen_mode
        )
        # 8. prepare distribution pre_processing samplers
        logits_processor = self._get_logits_processor(
            generation_config=generation_config,
            input_ids_seq_length=input_ids_seq_length,
            encoder_input_ids=input_ids,
            prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
            logits_processor=logits_processor,
        )
        # 9. prepare stopping criteria
        stopping_criteria = self._get_stopping_criteria(
            generation_config=generation_config, stopping_criteria=stopping_criteria
        )
        logits_warper = self._get_logits_warper(generation_config)

        if is_greedy_gen_mode:
            # 11. run greedy search
            return self.stream_greedy_search(
                input_ids,
                logits_processor,
                stopping_criteria,
                generation_config,
                synced_gpus,
                **model_kwargs,
            )
        elif is_sample_gen_mode:
            # 12. expand input_ids with `num_return_sequences` additional sequences per batch
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
                expand_size=generation_config.num_return_sequences,
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )
            return self.stream_sample(
                generation_config,
                input_ids,
                logits_processor,
                logits_warper,
                stopping_criteria,
                synced_gpus,
                **model_kwargs,
            )
        elif is_beam_gen_mode:
            return self.stream_beam_search(
                generation_config,
                input_ids,
                logits_processor,
                stopping_criteria,
                synced_gpus,
                **model_kwargs,
            )
        elif is_beam_sample_gen_mode:
            # interleave input_ids with `num_beams` additional sequences per batch
            return self.stream_beam_sample(
                input_ids,
                logits_processor,
                logits_warper,
                stopping_criteria,
                generation_config,
                synced_gpus,
                **model_kwargs,
            )
        else:
            raise Exception('not implement')
        
    def stream_sample(
        self,
        generation_config,
        input_ids,
        logits_processor,
        logits_warper,
        stopping_criteria,
        synced_gpus,
        **model_kwargs,
    ):
        bos_token_id, eos_token_id, pad_token_id = (
            generation_config.bos_token_id,
            generation_config.eos_token_id,
            generation_config.pad_token_id,
        )
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
        # keep track of which sequences are already finished
        unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
        this_peer_finished = False  # used by synced_gpus only
        scores=()
        # auto-regressive generation
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break
            # prepare model inputs
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
            # forward pass to get next token
            outputs = self(
                **model_inputs,
                return_dict=True,
            )
            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need
            next_token_logits = outputs.logits[:, -1, :]
            # pre-process distribution
            next_token_scores = logits_processor(input_ids, next_token_logits)
            next_token_scores = logits_warper(input_ids, next_token_scores)

            # sample
            probs = nn.functional.softmax(next_token_scores, dim=-1)
            next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)

            # finished sentences should have their next token be a padding token
            if eos_token_id is not None:
                if pad_token_id is None:
                    raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
                next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

            # update generated ids, model inputs, and length for next step
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )
            yield input_ids
            # if eos_token was found in one sentence, set sentence to finished
            if eos_token_id_tensor is not None:
                unfinished_sequences = unfinished_sequences.mul(
                    next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
                )
            
            # stop when each sentence is finished, or if we exceed the maximum length
            if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
                if not synced_gpus:
                    break
                else:
                    this_peer_finished = True
        yield input_ids

    def stream_beam_sample(
        self,
        input_ids,
        logits_processor,
        logits_warper,
        stopping_criteria,
        generation_config,
        synced_gpus,
        **model_kwargs,
    ):
        bos_token_id, eos_token_id, pad_token_id = (
            generation_config.bos_token_id,
            generation_config.eos_token_id,
            generation_config.pad_token_id,
        )
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
        num_beams = generation_config.num_beams
        batch_size, cur_len = input_ids.shape[0], input_ids.shape[-1]
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=generation_config.num_beams,
            device=input_ids.device,
            length_penalty=generation_config.length_penalty,
            do_early_stopping=generation_config.early_stopping,
            num_beam_hyps_to_keep=generation_config.num_return_sequences,
            max_length=generation_config.max_length,
        )
        input_ids, model_kwargs = self._expand_inputs_for_generation(
            input_ids=input_ids,
            expand_size=generation_config.num_beams * generation_config.num_return_sequences,
            is_encoder_decoder=self.config.is_encoder_decoder,
            **model_kwargs,
        )
        scores = ()
        beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
        beam_scores = beam_scores.view((batch_size * num_beams,))

        this_peer_finished = False  # used by synced_gpus only
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
            outputs = self(
                **model_inputs,
                return_dict=True,
            )

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]

            # hack: adjust tokens for Marian. For Marian we have to make sure that the `pad_token_id`
            # cannot be generated both before and after the `nn.functional.log_softmax` operation.
            next_token_logits = self.adjust_logits_during_generation(next_token_logits, cur_len=cur_len)
            next_token_scores = nn.functional.log_softmax(
                next_token_logits, dim=-1
            )  # (batch_size * num_beams, vocab_size)

            next_token_scores_processed = logits_processor(input_ids, next_token_scores)
            next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(next_token_scores)
            # Note: logits warpers are intentionally applied after adding running beam scores. On some logits warpers
            # (like top_p) this is indiferent, but on others (like temperature) it is not. For reference, see
            # https://github.com/huggingface/transformers/pull/5420#discussion_r449779867
            next_token_scores = logits_warper(input_ids, next_token_scores)

            # reshape for beam search
            vocab_size = next_token_scores.shape[-1]
            next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)

            probs = nn.functional.softmax(next_token_scores, dim=-1)

            next_tokens = torch.multinomial(probs, num_samples=2 * num_beams)
            next_token_scores = torch.gather(next_token_scores, -1, next_tokens)

            next_token_scores, _indices = torch.sort(next_token_scores, descending=True, dim=1)
            next_tokens = torch.gather(next_tokens, -1, _indices)

            next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
            next_tokens = next_tokens % vocab_size

            # stateless
            beam_outputs = beam_scorer.process(
                input_ids,
                next_token_scores,
                next_tokens,
                next_indices,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
                beam_indices=None,
            )
            beam_scores = beam_outputs["next_beam_scores"]
            beam_next_tokens = beam_outputs["next_beam_tokens"]
            beam_idx = beam_outputs["next_beam_indices"]

            input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
            yield input_ids
            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )
            if model_kwargs["past_key_values"] is not None:
                model_kwargs["past_key_values"] = self._reorder_cache(model_kwargs["past_key_values"], beam_idx)

            # increase cur_len
            cur_len = cur_len + 1

            if beam_scorer.is_done or stopping_criteria(input_ids, scores):
                if not synced_gpus:
                    break
                else:
                    this_peer_finished = True

        sequence_outputs = beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
            beam_indices=None,
        )
        yield sequence_outputs["sequences"]

    def stream_greedy_search(
        self,
        input_ids,
        logits_processor,
        stopping_criteria,
        generation_config,
        synced_gpus,
        **model_kwargs,
    ):
        # init values
        bos_token_id, eos_token_id, pad_token_id = (
            generation_config.bos_token_id,
            generation_config.eos_token_id,
            generation_config.pad_token_id,
        )
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
        # init attention / hidden states / scores tuples
        scores = () 
        # keep track of which sequences are already finished
        unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
        this_peer_finished = False  # used by synced_gpus only
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            # prepare model inputs
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
            # forward pass to get next token
            outputs = self(
                **model_inputs,
                return_dict=True,
            )

            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]
            # pre-process distribution
            next_tokens_scores = logits_processor(input_ids, next_token_logits)
            # argmax
            next_tokens = torch.argmax(next_tokens_scores, dim=-1)
            # finished sentences should have their next token be a padding token
            if eos_token_id is not None:
                if pad_token_id is None:
                    raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
                next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
            # update generated ids, model inputs, and length for next step
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )
            yield input_ids
            # if eos_token was found in one sentence, set sentence to finished
            if eos_token_id_tensor is not None:
                unfinished_sequences = unfinished_sequences.mul(
                    next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
                )

            # stop when each sentence is finished, or if we exceed the maximum length
            if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
                if not synced_gpus:
                    break
                else:
                    this_peer_finished = True
        yield input_ids

    def stream_beam_search(
        self,
        generation_config,
        input_ids,
        logits_processor,
        stopping_criteria,
        synced_gpus,
        **model_kwargs,
    ):

        # 10. go into beam search generation modes
        # 11. prepare beam search scorer
        bos_token_id, eos_token_id, pad_token_id = (
            generation_config.bos_token_id,
            generation_config.eos_token_id,
            generation_config.pad_token_id,
        )
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        num_beams = generation_config.num_beams
        batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=generation_config.num_beams,
            device=input_ids.device,
            length_penalty=generation_config.length_penalty,
            do_early_stopping=generation_config.early_stopping,
            num_beam_hyps_to_keep=generation_config.num_return_sequences,
            max_length=generation_config.max_length,
        )
        # 12. interleave input_ids with `num_beams` additional sequences per batch
        input_ids, model_kwargs = self._expand_inputs_for_generation(
            input_ids=input_ids,
            expand_size=generation_config.num_beams,
            is_encoder_decoder=self.config.is_encoder_decoder,
            **model_kwargs,
        )
        # beam_search logits
        batch_beam_size, cur_len = input_ids.shape
        if num_beams * batch_size != batch_beam_size:
            raise ValueError(
                f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
            )
        beam_scores = torch.zeros(
            (batch_size, num_beams), dtype=torch.float, device=input_ids.device
        )
        beam_scores[:, 1:] = -1e9
        beam_scores = beam_scores.view((batch_size * num_beams,))
        this_peer_finished = False  # used by synced_gpus only
        while True:

            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(
                    0.0 if this_peer_finished else 1.0
                ).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=False,
                output_hidden_states=False,
            )

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]
            # next_token_logits = self.adjust_logits_during_generation(next_token_logits, cur_len=cur_len) hack: adjust tokens for Marian.
            next_token_scores = nn.functional.log_softmax(
                next_token_logits, dim=-1
            )  # (batch_size * num_beams, vocab_size)
            next_token_scores_processed = logits_processor(input_ids, next_token_scores)
            next_token_scores = next_token_scores_processed + beam_scores[
                :, None
            ].expand_as(next_token_scores)

            # reshape for beam search
            vocab_size = next_token_scores.shape[-1]
            next_token_scores = next_token_scores.view(
                batch_size, num_beams * vocab_size
            )

            # Sample 2 next tokens for each beam (so we have some spare tokens and match output of beam search)
            next_token_scores, next_tokens = torch.topk(
                next_token_scores, 2 * num_beams, dim=1, largest=True, sorted=True
            )
            next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
            next_tokens = next_tokens % vocab_size
            # stateless
            beam_outputs = beam_scorer.process(
                input_ids,
                next_token_scores,
                next_tokens,
                next_indices,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
                beam_indices=None,
            )
            beam_scores = beam_outputs["next_beam_scores"]
            beam_next_tokens = beam_outputs["next_beam_tokens"]
            beam_idx = beam_outputs["next_beam_indices"]

            input_ids = torch.cat(
                [input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1
            )
            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )
            if model_kwargs["past_key_values"] is not None:
                model_kwargs["past_key_values"] = self._reorder_cache(
                    model_kwargs["past_key_values"], beam_idx
                )

            # increase cur_len
            cur_len = cur_len + 1

            yield input_ids

            if beam_scorer.is_done or stopping_criteria(input_ids, None):
                if not synced_gpus:
                    break
                else:
                    this_peer_finished = True

        final_result = beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
            beam_indices=None,
        )
        yield final_result["sequences"]

class StreamLlamaForCausalLM(LlamaForCausalLM, StreamGenerationMixin):
    pass

class StreamPeftGenerationMixin(PeftModelForCausalLM, StreamGenerationMixin):

    # default it call `model = MODEL_TYPE_TO_PEFT_MODEL_MAPPING[config.task_type](model, config)`, not cls!! so inherent PeftModelForCausalLM is non sense
    @classmethod
    def from_pretrained(cls, model, model_id, adapter_name="default", is_trainable=False,  **kwargs):
        # work in peft==0.3.0
        if peft.__version__ >= '0.3.0' and peft.__version__ != '0.3.0.dev0':
            # load the config
            from peft.utils import PromptLearningConfig
            config = LoraConfig.from_pretrained(model_id)

            if (getattr(model, "hf_device_map", None) is not None) and len(
                set(model.hf_device_map.values()).intersection({"cpu", "disk"})
            ) > 0:
                remove_hook_from_submodules(model)

            if isinstance(config, PromptLearningConfig) and is_trainable:
                raise ValueError("Cannot set a prompt learning adapter to trainable when loading pretrained adapter.")
            else:
                config.inference_mode = not is_trainable

            # here is the hack
            model = cls(model, config, adapter_name)
            model.load_adapter(model_id, adapter_name, **kwargs)
            # NOTICE
            model.base_model_prepare_inputs_for_generation = model.base_model.prepare_inputs_for_generation
            model._reorder_cache = model.base_model._reorder_cache
            return model
        else:
            return cls.from_pretrained_old_peft_version(model, model_id, **kwargs)


    @classmethod
    def from_pretrained_old_peft_version(cls, model, model_id, **kwargs):
        # work well in peft@e536616888d51b453ed354a6f1e243fecb02ea08

        # load the config
        config = LoraConfig.from_pretrained(model_id)

        if getattr(model, "hf_device_map", None) is not None:
            remove_hook_from_submodules(model)

        # here is the hack
        model = cls(model, config)
        model._reorder_cache = model.base_model._reorder_cache
        # load weights if any
        if os.path.exists(os.path.join(model_id, "adapter_model.bin")):
            filename = os.path.join(model_id, "adapter_model.bin")
        else:
            try:
                filename = hf_hub_download(model_id, "adapter_model.bin")
            except:  # noqa
                raise ValueError(
                    f"Can't find weights for {model_id} in {model_id} or in the Hugging Face Hub. "
                    f"Please check that the file {'adapter_model.bin'} is present at {model_id}."
                )

        adapters_weights = torch.load(
            filename,
            map_location=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
        )
        # load the weights into the model
        model = set_peft_model_state_dict(model, adapters_weights)
        if getattr(model, "hf_device_map", None) is not None:
            device_map = kwargs.get("device_map", "auto")
            max_memory = kwargs.get("max_memory", None)
            no_split_module_classes = model._no_split_modules
            if device_map != "sequential":
                max_memory = get_balanced_memory(
                    model,
                    max_memory=max_memory,
                    no_split_module_classes=no_split_module_classes,
                    low_zero=(device_map == "balanced_low_0"),
                )
            if isinstance(device_map, str):
                device_map = infer_auto_device_map(
                    model,
                    max_memory=max_memory,
                    no_split_module_classes=no_split_module_classes,
                )
            model = dispatch_model(model, device_map=device_map)
            hook = AlignDevicesHook(io_same_device=True)
            if model.peft_config.peft_type == PeftType.LORA:
                add_hook_to_module(model.base_model.model, hook)
            else:
                remove_hook_from_submodules(model.prompt_encoder)
                add_hook_to_module(model.base_model, hook)
        return model