Spaces:
Runtime error
Runtime error
File size: 9,967 Bytes
fa6856c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import os
import sys
import torch
import torch.nn as nn
import bitsandbytes as bnb
from datasets import load_dataset
import transformers
import argparse
import warnings
from huggingface_hub import snapshot_download
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaForCausalLM, LlamaTokenizer
from peft import (
prepare_model_for_int8_training,
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
set_peft_model_state_dict,
)
def get_peft_state_maybe_zero_3(state_dict, bias):
if hasattr(param, "ds_id"):
assert param.ds_status == ZeroParamStatus.NOT_AVAILABLE
with zero.GatheredParameters([param]):
param = param.data.cpu().clone().detach()
to_return = {k: maybe_zero_3(v) for k, v in to_return.items()}
return to_return
parser = argparse.ArgumentParser()
parser.add_argument("--wandb", action="store_true", default=False)
parser.add_argument("--data_path", type=str, default="merge.json")
parser.add_argument("--output_path", type=str, default="lora-Vicuna")
parser.add_argument("--model_path", type=str, default="decapoda-research/llama-7b-hf")
parser.add_argument("--eval_steps", type=int, default=200)
parser.add_argument("--save_steps", type=int, default=200)
parser.add_argument("--test_size", type=int, default=200)
parser.add_argument("--resume_from_checkpoint", type=str, default=None)
parser.add_argument("--ignore_data_skip", type=str, default="False")
parser.add_argument("--lora_remote_checkpoint", type=str, default=None)
parser.add_argument("--local_rank", type=int, default=-1)
parser.add_argument("--deepspeed", action="store_true", default=False)
args = parser.parse_args()
if not args.wandb:
os.environ["WANDB_MODE"] = "disable"
# optimized for RTX 4090. for larger GPUs, increase some of these?
MICRO_BATCH_SIZE = 2 # this could actually be 5 but i like powers of 2
BATCH_SIZE = 128
MAX_STEPS = None
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
EPOCHS = 3 # we don't always need 3 tbh
LEARNING_RATE = 3e-4 # the Karpathy constant
CUTOFF_LEN = 256 # 256 accounts for about 96% of the data
LORA_R = 8
LORA_ALPHA = 16
LORA_DROPOUT = 0.05
VAL_SET_SIZE = args.test_size #2000
TARGET_MODULES = [
"q_proj",
"v_proj",
]
DATA_PATH = args.data_path
OUTPUT_DIR = args.output_path #"lora-Vicuna"
device_map = {"": 0} #"auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
GRADIENT_ACCUMULATION_STEPS = GRADIENT_ACCUMULATION_STEPS // world_size
print(args.model_path)
model = LlamaForCausalLM.from_pretrained(
args.model_path,
load_in_8bit=False,
torch_dtype=torch.float16,
device_map=device_map,
).half()
tokenizer = LlamaTokenizer.from_pretrained(
args.model_path, add_eos_token=True
)
#model = prepare_model_for_int8_training(model)
config = LoraConfig(
r=LORA_R,
lora_alpha=LORA_ALPHA,
target_modules=TARGET_MODULES,
lora_dropout=LORA_DROPOUT,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
tokenizer.pad_token_id = 0 # unk. we want this to be different from the eos token
#tokenizer.padding_side = "left" # Allow batched inference
data = load_dataset("json", data_files=DATA_PATH)
now_max_steps = max((len(data["train"]) - VAL_SET_SIZE) // BATCH_SIZE * EPOCHS, EPOCHS)
if args.resume_from_checkpoint:
if args.lora_remote_checkpoint is not None:
snapshot_download(repo_id=args.lora_remote_checkpoint, allow_patterns=["*.pt", "*.bin", "*.json"], local_dir=args.resume_from_checkpoint)
# Check the available weights and load them
checkpoint_name = os.path.join(
args.resume_from_checkpoint, "pytorch_model.bin"
) # Full checkpoint
if not os.path.exists(checkpoint_name):
pytorch_bin_path = checkpoint_name
checkpoint_name = os.path.join(
args.resume_from_checkpoint, "adapter_model.bin"
) # only LoRA model - LoRA config above has to fit
if os.path.exists(checkpoint_name):
os.rename(checkpoint_name, pytorch_bin_path)
warnings.warn("The file name of the lora checkpoint'adapter_model.bin' is replaced with 'pytorch_model.bin'")
else:
args.resume_from_checkpoint = (
None # So the trainer won't try loading its state
)
# The two files above have a different name depending on how they were saved, but are actually the same.
if os.path.exists(checkpoint_name):
print(f"Restarting from {checkpoint_name}")
adapters_weights = torch.load(checkpoint_name)
model = set_peft_model_state_dict(model, adapters_weights)
else:
print(f"Checkpoint {checkpoint_name} not found")
train_args_path = os.path.join(args.resume_from_checkpoint, "trainer_state.json")
if os.path.exists(train_args_path):
import json
base_train_args = json.load(open(train_args_path, 'r'))
base_max_steps = base_train_args["max_steps"]
resume_scale = base_max_steps / now_max_steps
if base_max_steps > now_max_steps:
warnings.warn("epoch {} replace to the base_max_steps {}".format(EPOCHS, base_max_steps))
EPOCHS = None
MAX_STEPS = base_max_steps
else:
MAX_STEPS = now_max_steps
else:
MAX_STEPS = now_max_steps
model.print_trainable_parameters()
def generate_prompt(data_point):
# sorry about the formatting disaster gotta move fast
if data_point["input"]:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{data_point["instruction"]}
### Input:
{data_point["input"]}
### Response:
{data_point["output"]}"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{data_point["instruction"]}
### Response:
{data_point["output"]}"""
def tokenize(prompt):
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
result = tokenizer(
prompt,
truncation=True,
max_length=CUTOFF_LEN + 1,
padding="max_length",
)
return {
"input_ids": result["input_ids"][:-1],
"attention_mask": result["attention_mask"][:-1],
}
def generate_and_tokenize_prompt(data_point):
# This function masks out the labels for the input,
# so that our loss is computed only on the response.
user_prompt = (
(
f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{data_point["instruction"]}
### Input:
{data_point["input"]}
### Response:
"""
)
if data_point["input"]
else (
f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{data_point["instruction"]}
### Response:
"""
)
)
len_user_prompt_tokens = (
len(
tokenizer(
user_prompt,
truncation=True,
max_length=CUTOFF_LEN + 1,
)["input_ids"]
)
- 1
) # no eos token
full_tokens = tokenizer(
user_prompt + data_point["output"],
truncation=True,
max_length=CUTOFF_LEN + 1,
padding="max_length",
)["input_ids"][:-1]
return {
"input_ids": full_tokens,
"labels": [-100] * len_user_prompt_tokens
+ full_tokens[len_user_prompt_tokens:],
"attention_mask": [1] * (len(full_tokens)),
}
if VAL_SET_SIZE > 0:
train_val = data["train"].train_test_split(
test_size=VAL_SET_SIZE, shuffle=True, seed=42
)
train_data = train_val["train"].shuffle().map(generate_and_tokenize_prompt)
val_data = train_val["test"].shuffle().map(generate_and_tokenize_prompt)
else:
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
val_data = None
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=transformers.TrainingArguments(
per_device_train_batch_size=MICRO_BATCH_SIZE,
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
warmup_steps=100,
num_train_epochs=EPOCHS,
max_steps=MAX_STEPS,
learning_rate=LEARNING_RATE,
fp16=True,
logging_steps=20,
evaluation_strategy="steps" if VAL_SET_SIZE > 0 else "no",
save_strategy="steps",
eval_steps=args.eval_steps if VAL_SET_SIZE > 0 else None,
save_steps=args.save_steps,
output_dir=OUTPUT_DIR,
save_total_limit=30,
load_best_model_at_end=True if VAL_SET_SIZE > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
report_to="wandb" if args.wandb else [],
ignore_data_skip=args.ignore_data_skip,
deepspeed="sample/zero_config.json" if args.deepspeed else None,
),
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False)
)
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
).__get__(model, type(model))
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
print("\n If there's a warning about missing keys above, please disregard :)")
trainer.train(resume_from_checkpoint=args.resume_from_checkpoint)
model.save_pretrained(OUTPUT_DIR)
|