Spaces:
Runtime error
Runtime error
File size: 6,799 Bytes
fa6856c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import importlib
import math
import os
import random
import subprocess
import time
from dataclasses import is_dataclass
from enum import Enum
from itertools import repeat
from numbers import Number
from typing import Any, Dict, Iterable, Tuple
import numpy as np
import torch
from accelerate import Accelerator
from torch.optim.lr_scheduler import CosineAnnealingLR, LinearLR
def is_peft_available():
return importlib.util.find_spec("peft") is not None
def print_rank_0(*message):
"""
Print only once from the main rank
"""
if os.environ.get("RANK", "0") == "0":
print(*message)
def significant(x: Number, ndigits=2) -> Number:
"""
Cut the number up to its `ndigits` after the most significant
"""
if isinstance(x, torch.Tensor):
x = x.item()
if not isinstance(x, Number) or math.isnan(x) or x == 0:
return x
return round(x, ndigits - int(math.floor(math.log10(abs(x)))))
def set_seed(seed: int):
"""
Sets seeds across package dependencies for reproducibility.
"""
seed += int(os.environ.get("RANK", 0))
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# Training utils
def get_distributed_config(accelerator: Accelerator):
"""
Return accelerator distributed config
"""
dist_config = {
"mixed_precision": accelerator.mixed_precision,
"num_gpus": accelerator.num_processes,
}
if accelerator.state.deepspeed_plugin is not None:
ds_plugin = accelerator.state.deepspeed_plugin
dist_config.update(
{
"gradient_accumulation_steps": ds_plugin.gradient_accumulation_steps,
"gradient_clipping": ds_plugin.gradient_clipping,
"zero_stage": ds_plugin.zero_stage,
"offload_optimizer_device": ds_plugin.offload_optimizer_device,
"offload_param_device": ds_plugin.offload_param_device,
}
)
return dist_config
class OptimizerName(str, Enum):
"""Supported optimizer names"""
ADAM: str = "adam"
ADAMW: str = "adamw"
ADAM_8BIT_BNB: str = "adam_8bit_bnb"
ADAMW_8BIT_BNB: str = "adamw_8bit_bnb"
SGD: str = "sgd"
def get_optimizer_class(name: OptimizerName):
"""
Returns the optimizer class with the given name
Args:
name (str): Name of the optimizer as found in `OptimizerNames`
"""
if name == OptimizerName.ADAM:
return torch.optim.Adam
if name == OptimizerName.ADAMW:
return torch.optim.AdamW
if name == OptimizerName.ADAM_8BIT_BNB.value:
try:
from bitsandbytes.optim import Adam8bit
return Adam8bit
except ImportError:
raise ImportError(
"You must install the `bitsandbytes` package to use the 8-bit Adam. "
"Install with: `pip install bitsandbytes`"
)
if name == OptimizerName.ADAMW_8BIT_BNB.value:
try:
from bitsandbytes.optim import AdamW8bit
return AdamW8bit
except ImportError:
raise ImportError(
"You must install the `bitsandbytes` package to use 8-bit AdamW. "
"Install with: `pip install bitsandbytes`"
)
if name == OptimizerName.SGD.value:
return torch.optim.SGD
supported_optimizers = [o.value for o in OptimizerName]
raise ValueError(f"`{name}` is not a supported optimizer. " f"Supported optimizers are: {supported_optimizers}")
class SchedulerName(str, Enum):
"""Supported scheduler names"""
COSINE_ANNEALING = "cosine_annealing"
LINEAR = "linear"
def get_scheduler_class(name: SchedulerName):
"""
Returns the scheduler class with the given name
"""
if name == SchedulerName.COSINE_ANNEALING:
return CosineAnnealingLR
if name == SchedulerName.LINEAR:
return LinearLR
supported_schedulers = [s.value for s in SchedulerName]
raise ValueError(f"`{name}` is not a supported scheduler. " f"Supported schedulers are: {supported_schedulers}")
class Clock:
"""
Helper object for keeping track of time for computations.
"""
def __init__(self):
self.start = time.time()
self.total_time = 0
self.total_samples = 0
def tick(self, samples: int = 0) -> float:
"""
Returns time (s) since last call to tick(). Also records samples processed since last call.
:param samples: number of samples that have been processed since last call
"""
end = time.time()
delta = end - self.start
self.start = end
if samples != 0:
self.total_time += delta
self.total_samples += samples
return delta
def get_stat(self, n_samp: int = 1000, reset: bool = False):
"""
Returns average time (s) per n_samp samples processed
:param reset: Reset counts?
"""
sec_per_samp = self.total_time / self.total_samples
if reset:
self.total_samples = 0
self.total_time = 0
return sec_per_samp * n_samp
def tree_map(f, tree: Any) -> Any:
"""
Apply function f to all leaves in tree
"""
if is_dataclass(tree):
return tree.__class__(**{k: tree_map(f, v) for k, v in tree.__dict__.items()})
elif isinstance(tree, dict):
return {k: tree_map(f, v) for k, v in tree.items()}
elif isinstance(tree, (list, tuple)):
return tree.__class__(tree_map(f, v) for v in tree)
else:
return f(tree)
def to_device(tree, device, non_blocking=False):
"""
Move all tensors in tree to device
"""
return tree_map(lambda x: x.to(device, non_blocking=non_blocking), tree)
def filter_non_scalars(xs: Dict) -> Dict:
"""
Trims everything that can't be casted to float
"""
ys = {}
for k, v in xs.items():
try:
ys[k] = float(v)
except TypeError:
continue
return ys
def get_git_tag() -> Tuple[str, str]:
"""
Returns commit's short hash and date
"""
try:
output = subprocess.check_output("git log --format='%h/%as' -n1".split())
branch = subprocess.check_output("git rev-parse --abbrev-ref HEAD".split())
return branch.decode()[:-1], output.decode()[1:-2]
except subprocess.CalledProcessError:
return "unknown", "unknown"
# Iter utils
def infinite_dataloader(dataloader: Iterable, sampler=None) -> Iterable:
"""
Returns a cyclic infinite dataloader from a finite dataloader
"""
epoch = 0
for _ in repeat(dataloader):
if sampler is not None:
sampler.set_epoch(epoch)
epoch += 1
yield from dataloader
|