File size: 9,523 Bytes
967469d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53a7eb8
 
571cdbb
f4d77f2
53a7eb8
 
 
687fccd
57faddd
967469d
 
82134da
53a7eb8
c3aaf4b
53a7eb8
 
 
57faddd
53a7eb8
 
 
 
 
 
 
 
 
 
 
 
57faddd
53a7eb8
 
 
 
 
 
c3aaf4b
687fccd
 
 
 
 
 
 
 
53a7eb8
 
571cdbb
 
 
 
53a7eb8
571cdbb
 
2ceeece
571cdbb
 
 
 
57faddd
 
571cdbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57faddd
 
 
571cdbb
57faddd
571cdbb
57faddd
967469d
 
3e606db
 
967469d
3e606db
 
967469d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4d77f2
 
 
 
 
 
 
 
 
 
 
 
 
3e606db
f4d77f2
 
 
 
 
53a7eb8
f4d77f2
967469d
53a7eb8
 
 
 
c3aaf4b
53a7eb8
 
 
82134da
967469d
82134da
 
687fccd
53a7eb8
 
 
 
 
 
 
 
 
 
 
2ceeece
967469d
3e606db
f4d77f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# import os
# import sys
# import requests
# from langchain.chains import ConversationalRetrievalChain
# from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
# from langchain.text_splitter import CharacterTextSplitter
# from langchain.vectorstores import Chroma
# from langchain.embeddings import HuggingFaceEmbeddings
# from langchain.llms.base import LLM
# import gradio as gr

# # workaround for sqlite in HF spaces
# __import__('pysqlite3')
# sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')

# # πŸ“„ Load documents
# docs = []
# for f in os.listdir("multiple_docs"):
#     if f.endswith(".pdf"):
#         loader = PyPDFLoader(os.path.join("multiple_docs", f))
#         docs.extend(loader.load())
#     elif f.endswith(".docx") or f.endswith(".doc"):
#         loader = Docx2txtLoader(os.path.join("multiple_docs", f))
#         docs.extend(loader.load())
#     elif f.endswith(".txt"):
#         loader = TextLoader(os.path.join("multiple_docs", f))
#         docs.extend(loader.load())

# # πŸ”— Split into chunks
# splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
# docs = splitter.split_documents(docs)

# texts = [doc.page_content for doc in docs]
# metadatas = [{"id": i} for i in range(len(texts))]

# # 🧠 Embeddings
# embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")

# # πŸ—ƒοΈ Vectorstore
# vectorstore = Chroma(
#     persist_directory="./db",
#     embedding_function=embedding_function
# )
# vectorstore.add_texts(texts=texts, metadatas=metadatas)
# vectorstore.persist()

# # πŸ” Get DeepSeek API key from env
# DEEPSEEK_API_KEY = os.getenv("DEEPSEEK_API_KEY")
# if DEEPSEEK_API_KEY is None:
#     raise ValueError("DEEPSEEK_API_KEY environment variable is not set.")

# # 🌟 DeepSeek API endpoint
# DEEPSEEK_API_URL = "https://api.deepseek.com/v1/chat/completions"

# # πŸ”· Wrap DeepSeek API into LangChain LLM
# class DeepSeekLLM(LLM):
#     """LLM that queries DeepSeek's API."""
#     api_key: str = DEEPSEEK_API_KEY

#     def _call(self, prompt, stop=None, run_manager=None, **kwargs):
#         headers = {
#             "Authorization": f"Bearer {self.api_key}",
#             "Content-Type": "application/json"
#         }
#         payload = {
#             "model": "deepseek-chat",   # adjust if you have a specific model name
#             "messages": [
#                 {"role": "system", "content": "You are a helpful assistant."},
#                 {"role": "user", "content": prompt}
#             ],
#             "temperature": 0.7,
#             "max_tokens": 512
#         }
#         response = requests.post(DEEPSEEK_API_URL, headers=headers, json=payload)
#         response.raise_for_status()
#         data = response.json()
#         return data["choices"][0]["message"]["content"].strip()

#     @property
#     def _llm_type(self) -> str:
#         return "deepseek_api"

# llm = DeepSeekLLM()

# # πŸ”— Conversational chain
# chain = ConversationalRetrievalChain.from_llm(
#     llm,
#     retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
#     return_source_documents=True,
#     verbose=False
# )

# # πŸ’¬ Gradio UI
# chat_history = []

# with gr.Blocks() as demo:
#     chatbot = gr.Chatbot(
#         [("", "Hello, I'm Thierry Decae's chatbot, you can ask me any recruitment related questions such as my experience, where I'm eligible to work, skills etc you can chat with me directly in multiple languages")],
#         avatar_images=["./multiple_docs/Guest.jpg", "./multiple_docs/Thierry Picture.jpg"]
#     )
#     msg = gr.Textbox(placeholder="Type your question here...")
#     clear = gr.Button("Clear")

#     def user(query, chat_history):
#         chat_history_tuples = [(m[0], m[1]) for m in chat_history]
#         result = chain({"question": query, "chat_history": chat_history_tuples})
#         chat_history.append((query, result["answer"]))
#         return gr.update(value=""), chat_history

#     msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False)
#     clear.click(lambda: None, None, chatbot, queue=False)

# demo.launch(debug=True)  # remove share=True if running in HF Spaces


import os
import sys
import requests
from langchain.chains import ConversationalRetrievalChain, LLMChain
from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms.base import LLM
from langchain.prompts import PromptTemplate
from langchain.chains.question_answering import load_qa_chain
import gradio as gr

# workaround for sqlite in HF spaces
__import__('pysqlite3')
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')

# πŸ“„ Load documents
docs = []
for f in os.listdir("multiple_docs"):
    if f.endswith(".pdf"):
        loader = PyPDFLoader(os.path.join("multiple_docs", f))
        docs.extend(loader.load())
    elif f.endswith(".docx") or f.endswith(".doc"):
        loader = Docx2txtLoader(os.path.join("multiple_docs", f))
        docs.extend(loader.load())
    elif f.endswith(".txt"):
        loader = TextLoader(os.path.join("multiple_docs", f))
        docs.extend(loader.load())

# πŸ”— Split into chunks
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
docs = splitter.split_documents(docs)

texts = [doc.page_content for doc in docs]
metadatas = [{"id": i} for i in range(len(texts))]

# 🧠 Embeddings
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")

# πŸ—ƒοΈ Vectorstore
vectorstore = Chroma(
    persist_directory="./db",
    embedding_function=embedding_function
)
vectorstore.add_texts(texts=texts, metadatas=metadatas)
vectorstore.persist()

# πŸ” Get DeepSeek API key from env
DEEPSEEK_API_KEY = os.getenv("DEEPSEEK_API_KEY")
if DEEPSEEK_API_KEY is None:
    raise ValueError("DEEPSEEK_API_KEY environment variable is not set.")

# 🌟 DeepSeek API endpoint
DEEPSEEK_API_URL = "https://api.deepseek.com/v1/chat/completions"

# πŸ”· Wrap DeepSeek API into LangChain LLM
class DeepSeekLLM(LLM):
    """LLM that queries DeepSeek's API."""
    api_key: str = DEEPSEEK_API_KEY

    def _call(self, prompt, stop=None, run_manager=None, **kwargs):
        headers = {
            "Authorization": f"Bearer {self.api_key}",
            "Content-Type": "application/json"
        }
        payload = {
            "model": "deepseek-chat",   # adjust if you have a specific model name
            "messages": [
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": prompt}
            ],
            "temperature": 0.7,
            "max_tokens": 512
        }
        response = requests.post(DEEPSEEK_API_URL, headers=headers, json=payload)
        response.raise_for_status()
        data = response.json()
        return data["choices"][0]["message"]["content"].strip()

    @property
    def _llm_type(self) -> str:
        return "deepseek_api"

llm = DeepSeekLLM()

# ✨ Custom prompt template
template = """
You are Thierry Decae's chatbot. Your role is to answer questions about his career, experience, availability β€” in other words
any recruitment-related question.
Use the following context to answer the user's question as fully and accurately as possible.
If you don't know the answer, say "I'm not sure about that."
Always answer as if you were Thierry Decae β€” do not refer to him as 'he', use 'I' instead.

Context:
{context}

Question: {question}

Answer:
"""

prompt = PromptTemplate(
    input_variables=["context", "question"],
    template=template,
)

# πŸ”— QA chain with custom prompt
qa_chain = load_qa_chain(llm, chain_type="stuff", prompt=prompt)

# πŸ”· Question rephraser chain for follow-up questions β†’ standalone
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(
    """
Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question.

Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:
"""
)

question_generator = LLMChain(
    llm=llm,
    prompt=CONDENSE_QUESTION_PROMPT
)

# πŸ”· Finally: build the ConversationalRetrievalChain manually
chain = ConversationalRetrievalChain(
    retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
    question_generator=question_generator,
    combine_docs_chain=qa_chain,
    return_source_documents=True,
    verbose=False
)

# πŸ’¬ Gradio UI
chat_history = []

with gr.Blocks() as demo:
    chatbot = gr.Chatbot(
        [("", "Hello, I'm Thierry Decae's chatbot, you can ask me any recruitment related questions such as my experience, where I'm eligible to work, skills etc. You can chat with me directly in multiple languages.")],
        avatar_images=["./multiple_docs/Guest.jpg", "./multiple_docs/Thierry Picture.jpg"]
    )
    msg = gr.Textbox(placeholder="Type your question here...")
    clear = gr.Button("Clear")

    def user(query, chat_history):
        chat_history_tuples = [(m[0], m[1]) for m in chat_history]
        result = chain({"question": query, "chat_history": chat_history_tuples})
        chat_history.append((query, result["answer"]))
        return gr.update(value=""), chat_history

    msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False)
    clear.click(lambda: None, None, chatbot, queue=False)

demo.launch(debug=True)  # remove share=True if running in HF Spaces