File size: 11,190 Bytes
6fab23c b639d03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import tensorflow as tf
from tensorflow.keras import layers, models # type: ignore
def encoder_block(inputs, filters):
x = layers.Conv3D(filters=filters, kernel_size=(3, 3, 4), padding="same", activation="relu")(inputs)
x = layers.BatchNormalization()(x)
return x
def convlstm_block(inputs, filters):
# Reshape to (timesteps, height, width, channels) for ConvLSTM
x = layers.Reshape((inputs.shape[1], inputs.shape[2], inputs.shape[3], inputs.shape[4]))(inputs)
x = layers.ConvLSTM2D(filters=filters, kernel_size=(3, 3), padding="same", return_sequences=True)(x)
x = layers.BatchNormalization()(x)
# Reshape back to 3D conv format
x = layers.Reshape((inputs.shape[1], inputs.shape[2], inputs.shape[3], filters))(x)
return x
def decoder_block(inputs, skip_connection, filters):
x = layers.Conv3DTranspose(filters=filters, kernel_size=(3, 3, 4), padding="same", activation="relu")(inputs)
x = layers.BatchNormalization()(x)
skip_resized = layers.Conv3D(filters, (1, 1, 1), padding="same")(skip_connection)
x = layers.Concatenate()([x, skip_resized])
x = layers.ConvLSTM2D(filters=filters, kernel_size=(3, 3), padding="same", return_sequences=True)(x)
return x
def build_unet_convlstm(input_shape=(8, 95, 95, 3)):
input_tensor = layers.Input(shape=input_shape)
# Encoder with ConvLSTM
skip1 = encoder_block(input_tensor, filters=8)
skip1 = convlstm_block(skip1, filters=8) # Added ConvLSTM
skip2 = encoder_block(skip1, filters=16)
skip2 = convlstm_block(skip2, filters=16) # Added ConvLSTM
# Bottleneck with ConvLSTM
x = layers.Conv3D(filters=32, kernel_size=(3, 3, 3), padding="same", activation="relu")(skip2)
x = layers.BatchNormalization()(x)
x = convlstm_block(x, filters=32) # Bottleneck ConvLSTM
# Decoder
x = decoder_block(x, skip2, filters=16)
x = decoder_block(x, skip1, filters=8)
# Final Output Layer
x = layers.Conv3D(filters=1, kernel_size=(1, 1, 1), activation="relu")(x)
x = layers.GlobalAveragePooling3D()(x)
model = models.Model(inputs=input_tensor, outputs=x)
return model
import tensorflow as tf
from tensorflow.keras import layers, models # type: ignore
def RSTNet(input_shape):
"""
Creates the subnet for extracting TC radial structure features using a five-branch CNN design with 2D convolutions.
Parameters:
- input_shape: tuple, shape of the input data (e.g., (95, 95, 3))
Returns:
- model: tf.keras.Model, the radial structure subnet model
"""
input_tensor = layers.Input(shape=input_shape)
# Divide input data into four quadrants (NW, NE, SW, SE)
# Assuming the input shape is (batch_size, height, width, channels)
# Quadrant extraction - using slicing to separate quadrants
nw_quadrant = input_tensor[:, :input_shape[0]//2, :input_shape[1]//2, :]
ne_quadrant = input_tensor[:, :input_shape[0]//2, input_shape[1]//2:, :]
sw_quadrant = input_tensor[:, input_shape[0]//2:, :input_shape[1]//2, :]
se_quadrant = input_tensor[:, input_shape[0]//2:, input_shape[1]//2:, :]
target_height = max(input_shape[0]//2, input_shape[0] - input_shape[0]//2) # 48
target_width = max(input_shape[1]//2, input_shape[1] - input_shape[1]//2) # 48
# Padding the quadrants to match the target size (48, 48)
nw_quadrant = layers.ZeroPadding2D(padding=((0, target_height - nw_quadrant.shape[1]),
(0, target_width - nw_quadrant.shape[2])))(nw_quadrant)
ne_quadrant = layers.ZeroPadding2D(padding=((0, target_height - ne_quadrant.shape[1]),
(0, target_width - ne_quadrant.shape[2])))(ne_quadrant)
sw_quadrant = layers.ZeroPadding2D(padding=((0, target_height - sw_quadrant.shape[1]),
(0, target_width - sw_quadrant.shape[2])))(sw_quadrant)
se_quadrant = layers.ZeroPadding2D(padding=((0, target_height - se_quadrant.shape[1]),
(0, target_width - se_quadrant.shape[2])))(se_quadrant)
print(nw_quadrant.shape)
print(ne_quadrant.shape)
print(sw_quadrant.shape)
print(se_quadrant.shape)
# Main branch (processing the entire structure)
main_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(input_tensor)
y=layers.MaxPool2D()(main_branch)
y = layers.ZeroPadding2D(padding=((0, target_height - y.shape[1]),
(0, target_width - y.shape[2])))(y)
# Side branches (processing the individual quadrants)
nw_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(nw_quadrant)
ne_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(ne_quadrant)
sw_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(sw_quadrant)
se_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(se_quadrant)
# Apply padding to the side branches to match the dimensions of the main branch
# nw_branch = layers.UpSampling2D(size=(2, 2), interpolation='nearest')(nw_branch)
# ne_branch = layers.UpSampling2D(size=(2, 2), interpolation='nearest')(ne_branch)
# sw_branch = layers.UpSampling2D(size=(2, 2), interpolation='nearest')(sw_branch)
# se_branch = layers.UpSampling2D(size=(2, 2), interpolation='nearest')(se_branch)
# Fusion operations (concatenate the outputs from the main branch and side branches)
fusion = layers.concatenate([y, nw_branch, ne_branch, sw_branch, se_branch], axis=-1)
# Additional convolution layer to combine the fused features
# x = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(fusion)
x=layers.Reshape((1, 48, 48, 40))(fusion)
x = layers.ConvLSTM2D(filters=16, kernel_size=(3, 3), padding="same", return_sequences=True)(x)
x=layers.Reshape((48, 48, 16))(x)
x=layers.MaxPool2D(pool_size=(2, 2))(x)
# Final dense layer for further processing
nw_branch = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(nw_branch)
ne_branch = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(ne_branch)
sw_branch = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(sw_branch)
se_branch = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(se_branch)
nw_branch = layers.MaxPool2D(pool_size=(2, 2))(nw_branch)
ne_branch = layers.MaxPool2D(pool_size=(2, 2))(ne_branch)
sw_branch = layers.MaxPool2D(pool_size=(2, 2))(sw_branch)
se_branch = layers.MaxPool2D(pool_size=(2, 2))(se_branch)
fusion = layers.concatenate([x, nw_branch, ne_branch, sw_branch, se_branch], axis=-1)
# x = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(fusion)
x=layers.Reshape((1, 24, 24, 80))(fusion)
x = layers.ConvLSTM2D(filters=32, kernel_size=(3, 3), padding="same", return_sequences=True)(x)
x=layers.Reshape((24, 24, 32))(x)
x=layers.MaxPool2D(pool_size=(2, 2))(x)
nw_branch = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(nw_branch)
ne_branch = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(ne_branch)
sw_branch = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(sw_branch)
se_branch = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(se_branch)
nw_branch = layers.MaxPool2D(pool_size=(2, 2))(nw_branch)
ne_branch = layers.MaxPool2D(pool_size=(2, 2))(ne_branch)
sw_branch = layers.MaxPool2D(pool_size=(2, 2))(sw_branch)
se_branch = layers.MaxPool2D(pool_size=(2, 2))(se_branch)
fusion = layers.concatenate([x, nw_branch, ne_branch, sw_branch, se_branch], axis=-1)
# x = layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu')(fusion)
x=layers.Reshape((1,12, 12, 160))(fusion)
x = layers.ConvLSTM2D(filters=32, kernel_size=(3, 3), padding="same", return_sequences=True)(x)
x=layers.Reshape((12, 12, 32))(x)
x=layers.Conv2D(filters=32, kernel_size=(3, 3), activation=None)(x)
# Create and return the model
x=layers.Flatten()(x)
model = models.Model(inputs=input_tensor, outputs=x)
return model
from tensorflow.keras import layers, models # type: ignore
def build_cnn_model(input_shape=(8, 8, 1)):
# Define the input layer
input_tensor = layers.Input(shape=input_shape)
# Convolutional layer
x = layers.Conv2D(64, (3, 3), padding='same')(input_tensor)
x = layers.BatchNormalization()(x)
x = layers.ReLU()(x)
# Flatten layer
x = layers.Flatten()(x)
# Create the model
model = models.Model(inputs=input_tensor, outputs=x)
return model
from tensorflow.keras import layers, models, Input # type: ignore
def build_combined_model():
# Define input shapes
input_shape_3d = (8, 95, 95, 2)
input_shape_radial = (95, 95, 8)
input_shape_cnn = (8, 8, 1)
input_shape_latitude = (8,)
input_shape_longitude = (8,)
input_shape_other = (9,)
# Build individual models
model_3d = build_unet_convlstm(input_shape=input_shape_3d)
model_radial = RSTNet(input_shape=input_shape_radial)
model_cnn = build_cnn_model(input_shape=input_shape_cnn)
# Define new inputs
input_latitude = Input(shape=input_shape_latitude ,name="latitude_input")
input_longitude = Input(shape=input_shape_longitude, name="longitude_input")
input_other = Input(shape=input_shape_other, name="other_input")
# Flatten the additional inputs
flat_latitude = layers.Dense(32,activation='relu')(input_latitude)
flat_longitude = layers.Dense(32,activation='relu')(input_longitude)
flat_other = layers.Dense(64,activation='relu')(input_other)
# Combine all outputs
combined = layers.concatenate([
model_3d.output,
model_radial.output,
model_cnn.output,
flat_latitude,
flat_longitude,
flat_other
])
# Add dense layers for final processing
x = layers.Dense(128, activation='relu')(combined)
x = layers.Dense(1, activation=None)(x)
# Create the final model
final_model = models.Model(
inputs=[model_3d.input, model_radial.input, model_cnn.input,
input_latitude, input_longitude, input_other ],
outputs=x
)
return final_model
import h5py
with h5py.File(r"final_model.h5", 'r') as f:
print(f.attrs.get('keras_version'))
print(f.attrs.get('backend'))
print("Model layers:", list(f['model_weights'].keys()))
model = build_combined_model() # Your original model building function
model.load_weights(r"final_model.h5")
def predict_unetlstm(reduced_images_test,hov_m_test,test_vmax_3d,lat_test,lon_test,int_diff_test):
y=model.predict([reduced_images_test,hov_m_test,test_vmax_3d,lat_test,lon_test,int_diff_test ])
return y |