File size: 12,570 Bytes
22f2401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
810dc65
22f2401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
810dc65
22f2401
 
 
810dc65
22f2401
810dc65
22f2401
 
810dc65
22f2401
810dc65
22f2401
 
 
 
 
 
 
 
 
 
 
 
 
 
810dc65
22f2401
 
 
 
 
 
 
810dc65
22f2401
 
 
 
810dc65
22f2401
 
 
 
 
810dc65
22f2401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import streamlit as st
import numpy as np
from PIL import Image
import cv2
from scipy.ndimage import gaussian_filter

# ------------------ TC CENTERING UTILS ------------------

def find_tc_center(ir_image, smoothing_sigma=3):
    smoothed_image = gaussian_filter(ir_image, sigma=smoothing_sigma)
    min_coords = np.unravel_index(np.argmin(smoothed_image), smoothed_image.shape)
    return min_coords[::-1]  # Return as (x, y)

def extract_local_region(ir_image, center, region_size=95):
    h, w = ir_image.shape
    half_size = region_size // 2
    x_min = max(center[0] - half_size, 0)
    x_max = min(center[0] + half_size, w)
    y_min = max(center[1] - half_size, 0)
    y_max = min(center[1] + half_size, h)
    region = np.full((region_size, region_size), np.nan)
    extracted = ir_image[y_min:y_max, x_min:x_max]
    region[:extracted.shape[0], :extracted.shape[1]] = extracted
    return region

def generate_hovmoller(X_data):
    hovmoller_list = []
    for ir_images in X_data:  # ir_images: shape (8, 95, 95)
        time_steps = ir_images.shape[0]
        hovmoller_data = np.zeros((time_steps, 95, 95))
        for t in range(time_steps):
            tc_center = find_tc_center(ir_images[t])
            hovmoller_data[t] = extract_local_region(ir_images[t], tc_center, 95)
        hovmoller_list.append(hovmoller_data)
    return np.array(hovmoller_list)

def reshape_vmax(vmax_values, chunk_size=8):
    trimmed_size = (len(vmax_values) // chunk_size) * chunk_size
    vmax_values_trimmed = vmax_values[:trimmed_size]
    return vmax_values_trimmed.reshape(-1, chunk_size)
def create_3d_vmax(vmax_2d_array):
    # Initialize a 3D array of shape (N, 8, 8) filled with zeros
    vmax_3d_array = np.zeros((vmax_2d_array.shape[0], 8, 8))

    # Fill the diagonal for each row in the 3D array
    for i in range(vmax_2d_array.shape[0]):
        np.fill_diagonal(vmax_3d_array[i], vmax_2d_array[i])

    # Reshape to (N*10, 8, 8, 1) and remove the last element
    vmax_3d_array = vmax_3d_array.reshape(-1, 8, 8, 1)
     # Trim last element

    return vmax_3d_array

def process_lat_values(data):
    lat_values = data # Convert to NumPy array

    # Trim the array to make its length divisible by 8
    trimmed_size = (len(lat_values) // 8) * 8
    lat_values_trimmed = lat_values[:trimmed_size]
    lat_values_trimmed=np.array(lat_values_trimmed)  # Convert to NumPy array
    # Reshape into a 2D array (rows of 8 values each) and remove the last row
    lat_2d_array = lat_values_trimmed.reshape(-1, 8)

    return lat_2d_array

def process_lon_values(data):
    lon_values =data  # Convert to NumPy array
    lon_values = np.array(lon_values)  # Convert to NumPy array
    # Trim the array to make its length divisible by 8
    trimmed_size = (len(lon_values) // 8) * 8
    lon_values_trimmed = lon_values[:trimmed_size]

    # Reshape into a 2D array (rows of 8 values each) and remove the last row
    lon_2d_array = lon_values_trimmed.reshape(-1, 8)

    return lon_2d_array

import numpy as np

def calculate_intensity_difference(vmax_2d_array):
    """Calculates intensity difference for each row in Vmax 2D array."""
    int_diff = []
    
    for i in vmax_2d_array:
        k = abs(i[0] - i[-1])  # Absolute difference between first & last element
        i = np.append(i, k)  # Append difference as the 9th element
        int_diff.append(i)
    
    return np.array(int_diff)

import numpy as np

# Function to process and reshape image data
def process_images(images, batch_size=8, img_size=(95, 95, 1)):
    num_images = images.shape[0]
    
    # Trim the dataset to make it divisible by batch_size
    trimmed_size = (num_images // batch_size) * batch_size
    images_trimmed = images[:trimmed_size]

    # Reshape into (x, batch_size, img_size[0], img_size[1], img_size[2])
    images_reshaped = images_trimmed.reshape(-1, batch_size, *img_size)

    return images_reshaped

import numpy as np

def process_cc_mask(cc_data):
    """Processes CC mask images by trimming and reshaping into (x, 8, 95, 95, 1)."""
    num_images = cc_data.shape[0]
    batch_size = 8
    trimmed_size = (num_images // batch_size) * batch_size  # Ensure divisibility by 8

    images_trimmed = cc_data[:trimmed_size]  # Trim excess images
    cc_images = images_trimmed.reshape(-1, batch_size, 95, 95, 1)  # Reshape

    return cc_images
def extract_convective_cores(ir_data):
    """
    Extract Convective Cores (CCs) from IR imagery based on the criteria in the paper.
    Args:
        ir_data: IR imagery of shape (height, width).
    Returns:
        cc_mask: Binary mask of CCs (1 for CC, 0 otherwise) of shape (height, width).
    """
    height, width,c = ir_data.shape
    cc_mask = np.zeros_like(ir_data, dtype=np.float32)  # Initialize CC mask

    # Define the neighborhood (8-connected)
    neighbors = [(-1, -1), (-1, 0), (-1, 1),
                 (0, -1),   (0,0)  ,     (0, 1),
                 (1, -1),  (1, 0), (1, 1)]

    for i in range(1, height - 1):  # Avoid boundary pixels
        for j in range(1, width - 1):
            bt_ij = ir_data[i, j]

            # Condition 1: BT < 253K
            if (bt_ij >= 253).any():
                continue

            # Condition 2: BT <= BT_n for all neighbors
            is_local_min = True
            for di, dj in neighbors:
                if ir_data[i + di, j + dj] < bt_ij:
                    is_local_min = False
                    break
            if not is_local_min:
                continue

            # Condition 3: Gradient condition
            numerator1 = (ir_data[i - 1, j] + ir_data[i + 1, j] - 2 * bt_ij) / 3.1
            numerator2 = (ir_data[i, j - 1] + ir_data[i, j + 1] - 2 * bt_ij) / 8.0
            lhs = numerator1 + numerator2
            rhs = (4 / 5.8) * np.exp(0.0826 * (bt_ij - 217))

            if lhs > rhs:
                cc_mask[i, j] = 1  # Mark as CC

    return cc_mask

def compute_convective_core_masks(ir_data):
    """Extracts convective core masks for each IR image."""
    cc_mask = []
    
    for i in ir_data:
        c = extract_convective_cores(i)  # Assuming this function is defined
        c = np.array(c)
        cc_mask.append(c)
    
    return np.array(cc_mask)


# ------------------ Streamlit UI ------------------
st.set_page_config(page_title="TCIR Daily Input", layout="wide")

st.title("Tropical Cyclone U-Net Wind Speed (Intensity) Predictor")

ir_images = st.file_uploader("Upload 8 IR images", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
pmw_images = st.file_uploader("Upload 8 PMW images", type=["jpg", "jpeg", "png"], accept_multiple_files=True)

if len(ir_images) != 8 or len(pmw_images) != 8:
    st.warning("Please upload exactly 8 IR and 8 PMW images.")
else:
    st.success("Uploaded 8 IR and 8 PMW images successfully.")

st.header("Input Latitude, Longitude, Vmax")
lat_values, lon_values, vmax_values = [], [], []

import pandas as pd

import numpy as np

# File uploader
csv_file = st.file_uploader("Upload CSV file", type=["csv"])

if csv_file is not None:
    try:
        df = pd.read_csv(csv_file)
        required_columns = {'Latitude', 'Longitude', 'Vmax'}

        if required_columns.issubset(df.columns):
            lat_values = df['Latitude'].values
            lon_values = df['Longitude'].values
            vmax_values = df['Vmax'].values

            lat_values = np.array(lat_values)
            lon_values = np.array(lon_values)
            vmax_values = np.array(vmax_values)

            st.success("CSV file loaded and processed successfully!")
            st.write(df.head())

        else:
            st.error("CSV file must contain 'Latitude', 'Longitude', and 'Vmax' columns.")
    except Exception as e:
        st.error(f"Error reading CSV: {e}")
else:
    st.warning("Please upload a CSV file.")
st.header("Select Prediction Model")
model_choice = st.selectbox(
    "Choose a model for prediction",
    ("ConvGRU", "ConvLSTM", "Traj-GRU","3DCNN","spatiotemporalLSTM","Unet_LSTM"),
    index=0
)
# ------------------ Process Button ------------------
if st.button("Submit for Processing"):

    if len(ir_images) == 8 and len(pmw_images) == 8:
        # st.success("Starting preprocessing...")
        if model_choice == "Unet_LSTM":
            from unetlstm import predict_unetlstm
            model_predict_fn = predict_unetlstm
        elif model_choice == "ConvGRU":
            from gru_model import predict
            model_predict_fn = predict
        elif model_choice == "ConvLSTM":
            from convlstm import predict_lstm
            model_predict_fn = predict_lstm
        elif model_choice == "3DCNN":
            from cnn3d import predict_3dcnn
            model_predict_fn = predict_3dcnn
        elif model_choice == "Traj-GRU":
            from trjgru import predict_trajgru
            model_predict_fn = predict_trajgru
        elif model_choice == "spatiotemporalLSTM":
            from spaio_temp import predict_stlstm
            model_predict_fn = predict_stlstm

        ir_arrays = []
        pmw_arrays = []
        train_vmax_2d = reshape_vmax(np.array(vmax_values))

        train_vmax_3d= create_3d_vmax(train_vmax_2d)

        lat_processed = process_lat_values(lat_values)
        lon_processed = process_lon_values(lon_values)

        v_max_diff = calculate_intensity_difference(train_vmax_2d)

        for ir in ir_images:
            img = Image.open(ir).convert("L")
            arr = np.array(img).astype(np.float32)
            bt_arr = (arr / 255.0) * (310 - 190) + 190
            resized = cv2.resize(bt_arr, (95, 95), interpolation=cv2.INTER_CUBIC)
            ir_arrays.append(resized)

        for pmw in pmw_images:
            img = Image.open(pmw).convert("L")
            arr = np.array(img).astype(np.float32) / 255.0
            resized = cv2.resize(arr, (95, 95), interpolation=cv2.INTER_CUBIC)
            pmw_arrays.append(resized)
        ir=np.array(ir_arrays)
        pmw=np.array(pmw_arrays)
        
        # Stack into (8, 95, 95)
        ir_seq = process_images(ir)
        pmw_seq = process_images(pmw)


        # For demonstration: create batches
        X_train_new = ir_seq.reshape((1, 8, 95, 95)) # Shape: (1, 8, 95, 95)
  
        cc_mask= compute_convective_core_masks(X_train_new)
        hov_m_train = generate_hovmoller(X_train_new)
        hov_m_train[np.isnan(hov_m_train)] = 0 
        hov_m_train = hov_m_train.transpose(0, 2, 3, 1) 

        cc_mask[np.isnan(cc_mask)] = 0
        cc_mask=cc_mask.reshape(1, 8, 95, 95, 1)
        i_images=cc_mask+ir_seq
        reduced_images = np.concatenate([i_images,pmw_seq ], axis=-1)
        reduced_images[np.isnan(reduced_images)] = 0

        if model_choice == "Unet_LSTM":
            import tensorflow as tf

            def tf_gradient_magnitude(images):
                # Sobel kernels
                sobel_x = tf.constant([[1, 0, -1], [2, 0, -2], [1, 0, -1]], dtype=tf.float32)
                sobel_y = tf.constant([[1, 2, 1], [0, 0, 0], [-1, -2, -1]], dtype=tf.float32)
                sobel_x = tf.reshape(sobel_x, [3, 3, 1, 1])
                sobel_y = tf.reshape(sobel_y, [3, 3, 1, 1])

                images = tf.convert_to_tensor(images, dtype=tf.float32)
                images = tf.expand_dims(images, -1)

                gx = tf.nn.conv2d(images, sobel_x, strides=1, padding='SAME')
                gy = tf.nn.conv2d(images, sobel_y, strides=1, padding='SAME')
                grad_mag = tf.sqrt(tf.square(gx) + tf.square(gy) + 1e-6)

                return tf.squeeze(grad_mag, -1).numpy()
            def GM_maps_prep(ir):
                GM_maps=[]
                for i in ir:
                    GM_map = tf_gradient_magnitude(i)
                    GM_maps.append(GM_map)
                GM_maps=np.array(GM_maps)
                return GM_maps
            ir_seq=ir_seq.reshape(8, 95, 95, 1)
            GM_maps = GM_maps_prep(ir_seq)
            print(GM_maps.shape)
            GM_maps=GM_maps.reshape(1, 8, 95, 95, 1)
            i_images=cc_mask+ir_seq+GM_maps
            reduced_images = np.concatenate([i_images,pmw_seq ], axis=-1)
            reduced_images[np.isnan(reduced_images)] = 0
            print(reduced_images.shape)
            y = model_predict_fn(reduced_images, hov_m_train, train_vmax_3d, lat_processed, lon_processed, v_max_diff)
        else:
            y = model_predict_fn(reduced_images, hov_m_train, train_vmax_3d, lat_processed, lon_processed, v_max_diff)
        st.write("Predicted Vmax:", y)
    else:
        st.error("Make sure you uploaded exactly 8 IR and 8 PMW images.")