Spaces:
Running
Running
File size: 8,612 Bytes
e284167 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
"""
Evolutionary Distance Similarity (EDS) tasks compare embedding distances to continuous evolutionary distances.
The label distances are typically derived from phylogenetic trees.
"""
import logging
from collections import defaultdict
import numpy as np
import pandas as pd
from dgeb.evaluators import EDSEvaluator
from dgeb.modality import Modality
from dgeb.models import BioSeqTransformer
from dgeb.tasks import Dataset, Task, TaskMetadata, TaskResult
logger = logging.getLogger(__name__)
def run_eds_task(model: BioSeqTransformer, metadata: TaskMetadata) -> TaskResult:
"""Evaluate phylogeny distance correlation task. Utilizes the Evolutionary Distance Similarity (EDS) evaluator."""
if len(metadata.datasets) != 2:
raise ValueError("Phylogeny tasks require 2 datasets: sequences and distances.")
ds = metadata.datasets[0].load()["train"]
distance_df = metadata.datasets[1].load()["train"].to_pandas()
assert isinstance(
distance_df, pd.DataFrame
), f"Expected DataFrame, got {type(distance_df)}"
id_index_dict = {k: i for i, k in enumerate(ds["Entry"])}
distance_df["embeds1"] = None
distance_df["embeds2"] = None
test_embeds = model.encode(ds["Sequence"])
layer_results = defaultdict(dict)
for i, layer in enumerate(model.layers):
for row_idx, row in distance_df.iterrows():
id1 = row["ID1"]
id2 = row["ID2"]
embedding1 = test_embeds[id_index_dict[id1], i]
embedding2 = test_embeds[id_index_dict[id2], i]
distance_df.at[row_idx, "embeds1"] = embedding1
distance_df.at[row_idx, "embeds2"] = embedding2
embeds1 = np.array(distance_df["embeds1"].tolist())
embeds2 = np.array(distance_df["embeds2"].tolist())
dists = np.array(distance_df["distance"].tolist())
evaluator = EDSEvaluator(embeds1, embeds2, dists)
layer_results["layers"][layer] = evaluator()
# log results
logger.info(
f"Layer: {layer}, {metadata.display_name} distance correlation results: {layer_results['layers'][layer]}"
)
return TaskResult.from_dict(metadata, layer_results, model.metadata)
class RpobBacPhylogeny(Task):
metadata = TaskMetadata(
id="rpob_bac_phylogeny",
display_name="RpoB Bacterial Phylogeny",
description="Evaluate on RpoB phylogeny distance correlation task for Bacterial sequences.",
type="eds",
modality=Modality.PROTEIN,
datasets=[
Dataset(
path="tattabio/rpob_bac_phylogeny_sequences",
revision="b833ef8d8d873ea5387540562873f41d073d3e03",
),
Dataset(
path="tattabio/rpob_bac_phylogeny_distances",
revision="0594e1501ac9fd0e3de49257b8ec318c2a0ea6f7",
),
],
primary_metric_id="top_corr",
)
def run(self, model: BioSeqTransformer) -> TaskResult:
return run_eds_task(model, self.metadata)
class RpobArchPhylogeny(Task):
metadata = TaskMetadata(
id="rpob_arch_phylogeny",
display_name="RpoB Archaeal Phylogeny",
description="Evaluate on RpoB phylogeny distance correlation task for Archaeal sequences.",
type="eds",
modality=Modality.PROTEIN,
datasets=[
Dataset(
path="tattabio/rpob_arch_phylogeny_sequences",
revision="10de75b9f5ad12340d629fd1ad015ef4319d6ee4",
),
Dataset(
path="tattabio/rpob_arch_phylogeny_distances",
revision="2a585f0e135fe74b8ae6d31e7801c6031b0dcc18",
),
],
primary_metric_id="top_corr",
)
def run(self, model: BioSeqTransformer) -> TaskResult:
return run_eds_task(model, self.metadata)
class RpobBacDNAPhylogeny(Task):
metadata = TaskMetadata(
id="rpob_bac_dna_phylogeny",
display_name="RpoB Bacterial Phylogeny",
description="Evaluate on RpoB phylogeny distance correlation task for Bacterial DNA sequences.",
type="eds",
modality=Modality.DNA,
datasets=[
Dataset(
path="tattabio/rpob_bac_dna_phylogeny_sequences",
revision="8e137d3fb8886d8739ce08d1918745444c7d30d6",
),
Dataset(
path="tattabio/rpob_bac_dna_phylogeny_distances",
revision="67339e271b2a1602208153d53d70d35ba6fa8876",
),
],
primary_metric_id="top_corr",
)
def run(self, model: BioSeqTransformer) -> TaskResult:
return run_eds_task(model, self.metadata)
class RpobArchDNAPhylogeny(Task):
metadata = TaskMetadata(
id="rpob_arch_dna_phylogeny",
display_name="RpoB Archaeal Phylogeny",
description="Evaluate on RpoB phylogeny distance correlation task for Archaeal DNA sequences.",
type="eds",
modality=Modality.DNA,
datasets=[
Dataset(
path="tattabio/rpob_arch_dna_phylogeny_sequences",
revision="4453552a0e1021fee8697c71a559f4d3f6da2408",
),
Dataset(
path="tattabio/rpob_arch_dna_phylogeny_distances",
revision="51df97684a927ec2203568e80175ef26a62db039",
),
],
primary_metric_id="top_corr",
)
def run(self, model: BioSeqTransformer) -> TaskResult:
return run_eds_task(model, self.metadata)
class FeFePhylogeny(Task):
metadata = TaskMetadata(
id="fefe_phylogeny",
display_name="FeFeHydrogenase Phylogeny",
description="Evaluate on FeFeHydrogenase phylogeny distance correlation task.",
type="eds",
modality=Modality.PROTEIN,
datasets=[
Dataset(
path="tattabio/fefe_phylogeny_sequences",
revision="bce06d79d9ce58413e7bcbed6943905d1afb8b26",
),
Dataset(
path="tattabio/fefe_phylogeny_distances",
revision="d6357cee9b4071a8dcdeef54083006f0d5e94fd2",
),
],
primary_metric_id="top_corr",
)
def run(self, model: BioSeqTransformer) -> TaskResult:
return run_eds_task(model, self.metadata)
class Bac16SPhylogeny(Task):
metadata = TaskMetadata(
id="bac_16S_phylogeny",
display_name="16S Bacterial Phylogeny",
description="Evaluate on 16S Bacterial phylogeny distance correlation task.",
type="eds",
modality=Modality.DNA,
datasets=[
Dataset(
path="tattabio/bac_16S_sequences",
revision="efde1456b86748909cbcfecb07d783756d570aa3",
),
Dataset(
path="tattabio/bac_16S_distances",
revision="5c8ba5dfa600bb930d34af2fbc2b17f0acab62d3",
),
],
primary_metric_id="top_corr",
)
def run(self, model: BioSeqTransformer) -> TaskResult:
return run_eds_task(model, self.metadata)
class Arch16SPhylogeny(Task):
metadata = TaskMetadata(
id="arch_16S_phylogeny",
display_name="16S Archaeal Phylogeny",
description="Evaluate on 16S Archaeal phylogeny distance correlation task.",
type="eds",
modality=Modality.DNA,
datasets=[
Dataset(
path="tattabio/arch_16S_sequences",
revision="e0f0b5d5bd4b08a329b08c2bf4cc800781dff7f0",
),
Dataset(
path="tattabio/arch_16S_distances",
revision="b0356b632a954be70cefd57e3a02e7e1ccd34408",
),
],
primary_metric_id="top_corr",
)
def run(self, model: BioSeqTransformer) -> TaskResult:
return run_eds_task(model, self.metadata)
class Euk18SPhylogeny(Task):
metadata = TaskMetadata(
id="euk_18S_phylogeny",
display_name="18S Eukaryotic Phylogeny",
description="Evaluate on 18S Eukaryotic phylogeny distance correlation task.",
type="eds",
modality=Modality.DNA,
datasets=[
Dataset(
path="tattabio/euk_18S_sequences",
revision="5174cb3b2c5c46b61307fd1c2c08f5c432655196",
),
Dataset(
path="tattabio/euk_18S_distances",
revision="c4cea4fbb1185d08e0e01fd28ffb8b06a25025da",
),
],
primary_metric_id="top_corr",
)
def run(self, model: BioSeqTransformer) -> TaskResult:
return run_eds_task(model, self.metadata)
|