File size: 8,612 Bytes
e284167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""
Evolutionary Distance Similarity (EDS) tasks compare embedding distances to continuous evolutionary distances.
The label distances are typically derived from phylogenetic trees.
"""

import logging
from collections import defaultdict

import numpy as np
import pandas as pd

from dgeb.evaluators import EDSEvaluator
from dgeb.modality import Modality
from dgeb.models import BioSeqTransformer
from dgeb.tasks import Dataset, Task, TaskMetadata, TaskResult

logger = logging.getLogger(__name__)


def run_eds_task(model: BioSeqTransformer, metadata: TaskMetadata) -> TaskResult:
    """Evaluate phylogeny distance correlation task. Utilizes the Evolutionary Distance Similarity (EDS) evaluator."""
    if len(metadata.datasets) != 2:
        raise ValueError("Phylogeny tasks require 2 datasets: sequences and distances.")

    ds = metadata.datasets[0].load()["train"]
    distance_df = metadata.datasets[1].load()["train"].to_pandas()
    assert isinstance(
        distance_df, pd.DataFrame
    ), f"Expected DataFrame, got {type(distance_df)}"

    id_index_dict = {k: i for i, k in enumerate(ds["Entry"])}
    distance_df["embeds1"] = None
    distance_df["embeds2"] = None
    test_embeds = model.encode(ds["Sequence"])
    layer_results = defaultdict(dict)
    for i, layer in enumerate(model.layers):
        for row_idx, row in distance_df.iterrows():
            id1 = row["ID1"]
            id2 = row["ID2"]
            embedding1 = test_embeds[id_index_dict[id1], i]
            embedding2 = test_embeds[id_index_dict[id2], i]
            distance_df.at[row_idx, "embeds1"] = embedding1
            distance_df.at[row_idx, "embeds2"] = embedding2
        embeds1 = np.array(distance_df["embeds1"].tolist())
        embeds2 = np.array(distance_df["embeds2"].tolist())
        dists = np.array(distance_df["distance"].tolist())
        evaluator = EDSEvaluator(embeds1, embeds2, dists)
        layer_results["layers"][layer] = evaluator()
        # log results
        logger.info(
            f"Layer: {layer}, {metadata.display_name} distance correlation results: {layer_results['layers'][layer]}"
        )

    return TaskResult.from_dict(metadata, layer_results, model.metadata)


class RpobBacPhylogeny(Task):
    metadata = TaskMetadata(
        id="rpob_bac_phylogeny",
        display_name="RpoB Bacterial Phylogeny",
        description="Evaluate on RpoB phylogeny distance correlation task for Bacterial sequences.",
        type="eds",
        modality=Modality.PROTEIN,
        datasets=[
            Dataset(
                path="tattabio/rpob_bac_phylogeny_sequences",
                revision="b833ef8d8d873ea5387540562873f41d073d3e03",
            ),
            Dataset(
                path="tattabio/rpob_bac_phylogeny_distances",
                revision="0594e1501ac9fd0e3de49257b8ec318c2a0ea6f7",
            ),
        ],
        primary_metric_id="top_corr",
    )

    def run(self, model: BioSeqTransformer) -> TaskResult:
        return run_eds_task(model, self.metadata)


class RpobArchPhylogeny(Task):
    metadata = TaskMetadata(
        id="rpob_arch_phylogeny",
        display_name="RpoB Archaeal Phylogeny",
        description="Evaluate on RpoB phylogeny distance correlation task for Archaeal sequences.",
        type="eds",
        modality=Modality.PROTEIN,
        datasets=[
            Dataset(
                path="tattabio/rpob_arch_phylogeny_sequences",
                revision="10de75b9f5ad12340d629fd1ad015ef4319d6ee4",
            ),
            Dataset(
                path="tattabio/rpob_arch_phylogeny_distances",
                revision="2a585f0e135fe74b8ae6d31e7801c6031b0dcc18",
            ),
        ],
        primary_metric_id="top_corr",
    )

    def run(self, model: BioSeqTransformer) -> TaskResult:
        return run_eds_task(model, self.metadata)


class RpobBacDNAPhylogeny(Task):
    metadata = TaskMetadata(
        id="rpob_bac_dna_phylogeny",
        display_name="RpoB Bacterial Phylogeny",
        description="Evaluate on RpoB phylogeny distance correlation task for Bacterial DNA sequences.",
        type="eds",
        modality=Modality.DNA,
        datasets=[
            Dataset(
                path="tattabio/rpob_bac_dna_phylogeny_sequences",
                revision="8e137d3fb8886d8739ce08d1918745444c7d30d6",
            ),
            Dataset(
                path="tattabio/rpob_bac_dna_phylogeny_distances",
                revision="67339e271b2a1602208153d53d70d35ba6fa8876",
            ),
        ],
        primary_metric_id="top_corr",
    )

    def run(self, model: BioSeqTransformer) -> TaskResult:
        return run_eds_task(model, self.metadata)


class RpobArchDNAPhylogeny(Task):
    metadata = TaskMetadata(
        id="rpob_arch_dna_phylogeny",
        display_name="RpoB Archaeal Phylogeny",
        description="Evaluate on RpoB phylogeny distance correlation task for Archaeal DNA sequences.",
        type="eds",
        modality=Modality.DNA,
        datasets=[
            Dataset(
                path="tattabio/rpob_arch_dna_phylogeny_sequences",
                revision="4453552a0e1021fee8697c71a559f4d3f6da2408",
            ),
            Dataset(
                path="tattabio/rpob_arch_dna_phylogeny_distances",
                revision="51df97684a927ec2203568e80175ef26a62db039",
            ),
        ],
        primary_metric_id="top_corr",
    )

    def run(self, model: BioSeqTransformer) -> TaskResult:
        return run_eds_task(model, self.metadata)


class FeFePhylogeny(Task):
    metadata = TaskMetadata(
        id="fefe_phylogeny",
        display_name="FeFeHydrogenase Phylogeny",
        description="Evaluate on FeFeHydrogenase phylogeny distance correlation task.",
        type="eds",
        modality=Modality.PROTEIN,
        datasets=[
            Dataset(
                path="tattabio/fefe_phylogeny_sequences",
                revision="bce06d79d9ce58413e7bcbed6943905d1afb8b26",
            ),
            Dataset(
                path="tattabio/fefe_phylogeny_distances",
                revision="d6357cee9b4071a8dcdeef54083006f0d5e94fd2",
            ),
        ],
        primary_metric_id="top_corr",
    )

    def run(self, model: BioSeqTransformer) -> TaskResult:
        return run_eds_task(model, self.metadata)


class Bac16SPhylogeny(Task):
    metadata = TaskMetadata(
        id="bac_16S_phylogeny",
        display_name="16S Bacterial Phylogeny",
        description="Evaluate on 16S Bacterial phylogeny distance correlation task.",
        type="eds",
        modality=Modality.DNA,
        datasets=[
            Dataset(
                path="tattabio/bac_16S_sequences",
                revision="efde1456b86748909cbcfecb07d783756d570aa3",
            ),
            Dataset(
                path="tattabio/bac_16S_distances",
                revision="5c8ba5dfa600bb930d34af2fbc2b17f0acab62d3",
            ),
        ],
        primary_metric_id="top_corr",
    )

    def run(self, model: BioSeqTransformer) -> TaskResult:
        return run_eds_task(model, self.metadata)


class Arch16SPhylogeny(Task):
    metadata = TaskMetadata(
        id="arch_16S_phylogeny",
        display_name="16S Archaeal Phylogeny",
        description="Evaluate on 16S Archaeal phylogeny distance correlation task.",
        type="eds",
        modality=Modality.DNA,
        datasets=[
            Dataset(
                path="tattabio/arch_16S_sequences",
                revision="e0f0b5d5bd4b08a329b08c2bf4cc800781dff7f0",
            ),
            Dataset(
                path="tattabio/arch_16S_distances",
                revision="b0356b632a954be70cefd57e3a02e7e1ccd34408",
            ),
        ],
        primary_metric_id="top_corr",
    )

    def run(self, model: BioSeqTransformer) -> TaskResult:
        return run_eds_task(model, self.metadata)


class Euk18SPhylogeny(Task):
    metadata = TaskMetadata(
        id="euk_18S_phylogeny",
        display_name="18S Eukaryotic Phylogeny",
        description="Evaluate on 18S Eukaryotic phylogeny distance correlation task.",
        type="eds",
        modality=Modality.DNA,
        datasets=[
            Dataset(
                path="tattabio/euk_18S_sequences",
                revision="5174cb3b2c5c46b61307fd1c2c08f5c432655196",
            ),
            Dataset(
                path="tattabio/euk_18S_distances",
                revision="c4cea4fbb1185d08e0e01fd28ffb8b06a25025da",
            ),
        ],
        primary_metric_id="top_corr",
    )

    def run(self, model: BioSeqTransformer) -> TaskResult:
        return run_eds_task(model, self.metadata)