File size: 4,252 Bytes
0bf7de2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200f052
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import random
import requests
from base64 import b64decode
from flask import Flask, request, jsonify, Response, stream_with_context, render_template_string

from transformers import AutoTokenizer

def calc_tokens(text):
    tokenizer = AutoTokenizer.from_pretrained("PJMixers/CohereForAI_c4ai-command-r-plus-tokenizer")
    tokens = tokenizer.tokenize(text)
    return len(tokens)

def calc_messages_tokens(json_data):
    messages = json_data["messages"]
    m_messages = []
    user_count = 0
    prompt = "<BOS_TOKEN>"
    for message in messages:
        if message["role"] == "system":
            prompt += f"<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{message['content']}<|END_OF_TURN_TOKEN|>"
        elif message["role"] == "user":
            user_count += 1
            prompt += f"<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{message['content']}<|END_OF_TURN_TOKEN|>"
        elif message["role"] == "assistant":
            prompt += f"<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>{message['content']}<|END_OF_TURN_TOKEN|>"
        else:
            continue
    prompt += "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"
    total_tokens = calc_tokens(prompt) + user_count + 1
    return total_tokens + 10 # for robustness
    
app = Flask(__name__)

@app.route('/', methods=['GET'])
def index():
    template = '''
    <html>
        <head>
            <title>Command-R-Plus Chat API</title>
        </head>
        <body>
            <h1>Command-R-Plus OpenAI Compatible API</h1>
            <h1>You need to be a HF PRO user to use it.</h1>
            <li>1. Create your token(as api key) <a target="_blank" href="https://huggingface.co/settings/tokens/new">[here]</a> by selecting "serverless Inference API".</li>
            <li>2. Set `https://tastypear-command-r-plus-chat.hf.space/api" as the domain in the client configuration.</li>
            If you have multiple keys, you can concatenate them with a semicolon (`;`) to use them randomly, e.g., `hf_aaaa;hf_bbbb;hf_...`
        </body>
    </html>
    '''
    return render_template_string(template)

def get_new_bearer(key):
    data = "C1RvUWoZAjd+ZBUyIV1CXjB3ay1VCA98Im4rWH5gVlZbKS1aBjhYU2YjHyVFeDwvI3x9cy92Vw1bKS5VHFM5VU9QVmpiDxJ6EmNSP1EHOgV6dCEOKEdncCJ7YBZmKQlkF1AYSkBOc0hiNhFBBHRWUmNrDQBycjUIOF5/WD1LRyZ/BidjFmEuelxBU3B9IhVDAnV5TXQRMGxFUDkDDVRnWzNVYg9DAQJiIVEqfFtRcXd3Lgd5CFx/U3AMDA1jPA4APUtifgh7fid7BhxJE28bSnVtYmdVAQt/CkdJYl4NDCRZQiNsCktrcwh3RwBlHQJUFngmdU9/Xl5eKC54KWdZXlYbAClJZAAlESdcUjt2eA5GASpUAmgKUkJ2cGdyBDZQCkpxUVQXLB51fy83GFh4PgxXcilgHCBdHVsZWnJjb0JEMAhaGWpeen8GDDR9fCMtLGBbeDA7RQdtLxJJDksCYGJ4VWVvNiRZNX9Ab0MtDRJ6RTM2NEVaeyJ+XGtaAzphAFcHd09Vd2FEBStDBnZGXkgMBjdPRQARG2phfCJzfS9Kbw1LO0w4cE5VektlARFbGX1EZUwLISplZh8JGGRxVTZCTDdrLgE="
    data = b64decode(data)
    key = (key * (len(data) // len(key) + 1))[:len(data)]
    data =  (bytes([a ^ b for a, b in zip(data, key.encode())])).decode()
    return random.choice(data.split('\n'))


@app.route('/api/v1/chat/completions', methods=['POST'])
def proxy():
    headers = dict(request.headers)
    headers.pop('Host', None)
    headers.pop('Content-Length', None)
    bearer = request.headers['Authorization'].split(' ')[1]
    
    if(bearer.startswith('hf_')):
        # for public usage
        headers['Authorization'] = f"Bearer {random.choice(bearer.split(';'))}"
    else:
        # my private keys
        headers['Authorization'] = f'Bearer {get_new_bearer(bearer)}'

    headers['X-Use-Cache'] = 'false'

    json_data = request.get_json()
    
    # Use the largest ctx
    json_data['max_tokens'] = 32768 - calc_messages_tokens(json_data)
    
    json_data['json_mode'] = False
    
    model = 'CohereForAI/c4ai-command-r-plus'
    
    def generate():
        with requests.post(f"https://api-inference.huggingface.co/models/{model}/v1/chat/completions", json=request.json, headers=headers, stream=True) as resp:
            for chunk in resp.iter_content(chunk_size=1024):
                if chunk:
                    yield chunk
    
    return Response(stream_with_context(generate()), content_type='text/event-stream')

#import gevent.pywsgi
#from gevent import monkey;monkey.patch_all()
if __name__ == "__main__":
    app.run(debug=True)
    # gevent.pywsgi.WSGIServer((args.host, args.port), app).serve_forever()