Spaces:
Runtime error
Runtime error
File size: 11,986 Bytes
9dabfa9 e45aab0 9dabfa9 e45aab0 9dabfa9 e45aab0 9dabfa9 e45aab0 9dabfa9 e45aab0 9dabfa9 02d9efc 9dabfa9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
[
{ "name":"sentence-transformers/all-MiniLM-L6-v2",
"model":"sentence-transformers/all-MiniLM-L6-v2",
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
"orig_author_url":"https://github.com/UKPLab",
"orig_author":"Ubiquitous Knowledge Processing Lab",
"sota_info": {
"task":"Over 3.8 million downloads from Huggingface",
"sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2"
},
"paper_url":"https://arxiv.org/abs/1908.10084",
"mark":"True",
"class":"HFModel"},
{ "name":"sentence-transformers/paraphrase-MiniLM-L6-v2",
"model":"sentence-transformers/paraphrase-MiniLM-L6-v2",
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
"orig_author_url":"https://github.com/UKPLab",
"orig_author":"Ubiquitous Knowledge Processing Lab",
"sota_info": {
"task":"Over 2 million downloads from Huggingface",
"sota_link":"https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2"
},
"paper_url":"https://arxiv.org/abs/1908.10084",
"mark":"True",
"class":"HFModel"},
{ "name":"sentence-transformers/bert-base-nli-mean-tokens",
"model":"sentence-transformers/bert-base-nli-mean-tokens",
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
"orig_author_url":"https://github.com/UKPLab",
"orig_author":"Ubiquitous Knowledge Processing Lab",
"sota_info": {
"task":"Over 700,000 downloads from Huggingface",
"sota_link":"https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens"
},
"paper_url":"https://arxiv.org/abs/1908.10084",
"mark":"True",
"class":"HFModel"},
{ "name":"sentence-transformers/all-mpnet-base-v2",
"model":"sentence-transformers/all-mpnet-base-v2",
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
"orig_author_url":"https://github.com/UKPLab",
"orig_author":"Ubiquitous Knowledge Processing Lab",
"sota_info": {
"task":"Over 500,000 downloads from Huggingface",
"sota_link":"https://huggingface.co/sentence-transformers/all-mpnet-base-v2"
},
"paper_url":"https://arxiv.org/abs/1908.10084",
"mark":"True",
"class":"HFModel"},
{ "name":"sentence-transformers/all-MiniLM-L12-v2",
"model":"sentence-transformers/all-MiniLM-L12-v2",
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
"orig_author_url":"https://github.com/UKPLab",
"orig_author":"Ubiquitous Knowledge Processing Lab",
"sota_info": {
"task":"Over 500,000 downloads from Huggingface",
"sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2"
},
"paper_url":"https://arxiv.org/abs/1908.10084",
"mark":"True",
"class":"HFModel"},
{ "name":"SGPT-125M",
"model":"Muennighoff/SGPT-125M-weightedmean-nli-bitfit",
"fork_url":"https://github.com/taskswithcode/sgpt",
"orig_author_url":"https://github.com/Muennighoff",
"orig_author":"Niklas Muennighoff",
"sota_info": {
"task":"#1 in multiple information retrieval & search tasks(smaller variant)",
"sota_link":"https://paperswithcode.com/paper/sgpt-gpt-sentence-embeddings-for-semantic"
},
"paper_url":"https://arxiv.org/abs/2202.08904v5",
"mark":"True",
"class":"SGPTModel"},
{ "name":"SGPT-1.3B",
"model": "Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit",
"fork_url":"https://github.com/taskswithcode/sgpt",
"orig_author_url":"https://github.com/Muennighoff",
"orig_author":"Niklas Muennighoff",
"sota_info": {
"task":"#1 in multiple information retrieval & search tasks(smaller variant)",
"sota_link":"https://paperswithcode.com/paper/sgpt-gpt-sentence-embeddings-for-semantic"
},
"paper_url":"https://arxiv.org/abs/2202.08904v5",
"Note":"If this large model takes too long or fails to load , try this ",
"alt_url":"http://www.taskswithcode.com/sentence_similarity/",
"mark":"True",
"class":"SGPTModel"},
{ "name":"SGPT-5.8B",
"model": "Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit" ,
"fork_url":"https://github.com/taskswithcode/sgpt",
"orig_author_url":"https://github.com/Muennighoff",
"orig_author":"Niklas Muennighoff",
"Note":"If this large model takes too long or fails to load , try this ",
"alt_url":"http://www.taskswithcode.com/sentence_similarity/",
"sota_info": {
"task":"#1 in multiple information retrieval & search tasks",
"sota_link":"https://paperswithcode.com/paper/sgpt-gpt-sentence-embeddings-for-semantic"
},
"paper_url":"https://arxiv.org/abs/2202.08904v5",
"mark":"True",
"class":"SGPTModel"},
{ "name":"SIMCSE-large" ,
"model":"princeton-nlp/sup-simcse-roberta-large",
"fork_url":"https://github.com/taskswithcode/SimCSE",
"orig_author_url":"https://github.com/princeton-nlp",
"orig_author":"Princeton Natural Language Processing",
"Note":"If this large model takes too long or fails to load , try this ",
"alt_url":"http://www.taskswithcode.com/sentence_similarity/",
"sota_info": {
"task":"Within top 10 in multiple semantic textual similarity tasks",
"sota_link":"https://paperswithcode.com/paper/simcse-simple-contrastive-learning-of"
},
"paper_url":"https://arxiv.org/abs/2104.08821v4",
"mark":"True",
"class":"SimCSEModel","sota_link":"https://paperswithcode.com/sota/semantic-textual-similarity-on-sick"},
{ "name":"SIMCSE-base" ,
"model":"princeton-nlp/sup-simcse-roberta-base",
"fork_url":"https://github.com/taskswithcode/SimCSE",
"orig_author_url":"https://github.com/princeton-nlp",
"orig_author":"Princeton Natural Language Processing",
"sota_info": {
"task":"Within top 10 in multiple semantic textual similarity tasks(smaller variant)",
"sota_link":"https://paperswithcode.com/paper/simcse-simple-contrastive-learning-of"
},
"paper_url":"https://arxiv.org/abs/2104.08821v4",
"mark":"True",
"class":"SimCSEModel","sota_link":"https://paperswithcode.com/sota/semantic-textual-similarity-on-sick"},
{ "name":"GPT-3-175B (text-similarity-davinci-001)" ,
"model":"text-similarity-davinci-001",
"fork_url":"https://openai.com/api/",
"orig_author_url":"https://openai.com/api/",
"orig_author":"OpenAI",
"sota_info": {
"task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
"sota_link":"https://paperswithcode.com/method/gpt-3"
},
"paper_url":"https://arxiv.org/abs/2005.14165v4",
"mark":"True",
"custom_load":"False",
"Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
"alt_url":"https://openai.com/api/",
"class":"OpenAIModel","sota_link":"https://arxiv.org/abs/2005.14165v4"},
{ "name":"GPT-3-6.7B (text-similarity-curie-001)" ,
"model":"text-similarity-curie-001",
"fork_url":"https://openai.com/api/",
"orig_author_url":"https://openai.com/api/",
"orig_author":"OpenAI",
"sota_info": {
"task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
"sota_link":"https://paperswithcode.com/method/gpt-3"
},
"paper_url":"https://arxiv.org/abs/2005.14165v4",
"mark":"True",
"custom_load":"False",
"Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
"alt_url":"https://openai.com/api/",
"class":"OpenAIModel","sota_link":"https://arxiv.org/abs/2005.14165v4"},
{ "name":"GPT-3-1.3B (text-similarity-babbage-001)" ,
"model":"text-similarity-babbage-001",
"fork_url":"https://openai.com/api/",
"orig_author_url":"https://openai.com/api/",
"orig_author":"OpenAI",
"sota_info": {
"task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
"sota_link":"https://paperswithcode.com/method/gpt-3"
},
"paper_url":"https://arxiv.org/abs/2005.14165v4",
"mark":"True",
"custom_load":"False",
"Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
"alt_url":"https://openai.com/api/",
"class":"OpenAIModel","sota_link":"https://arxiv.org/abs/2005.14165v4"},
{ "name":"GPT-3-350M (text-similarity-ada-001)" ,
"model":"text-similarity-ada-001",
"fork_url":"https://openai.com/api/",
"orig_author_url":"https://openai.com/api/",
"orig_author":"OpenAI",
"sota_info": {
"task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
"sota_link":"https://paperswithcode.com/method/gpt-3"
},
"paper_url":"https://arxiv.org/abs/2005.14165v4",
"mark":"True",
"custom_load":"False",
"Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
"alt_url":"https://openai.com/api/",
"class":"OpenAIModel","sota_link":"https://arxiv.org/abs/2005.14165v4"}
]
|