File size: 4,233 Bytes
5a03f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import logging

import torch
from trainer.io import load_fsspec

from TTS.encoder.models.resnet import ResNetSpeakerEncoder
from TTS.vocoder.models.hifigan_generator import HifiganGenerator

logger = logging.getLogger(__name__)


class HifiDecoder(torch.nn.Module):
    def __init__(
        self,
        input_sample_rate=22050,
        output_sample_rate=24000,
        output_hop_length=256,
        ar_mel_length_compression=1024,
        decoder_input_dim=1024,
        resblock_type_decoder="1",
        resblock_dilation_sizes_decoder=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
        resblock_kernel_sizes_decoder=[3, 7, 11],
        upsample_rates_decoder=[8, 8, 2, 2],
        upsample_initial_channel_decoder=512,
        upsample_kernel_sizes_decoder=[16, 16, 4, 4],
        d_vector_dim=512,
        cond_d_vector_in_each_upsampling_layer=True,
        speaker_encoder_audio_config={
            "fft_size": 512,
            "win_length": 400,
            "hop_length": 160,
            "sample_rate": 16000,
            "preemphasis": 0.97,
            "num_mels": 64,
        },
    ):
        super().__init__()
        self.input_sample_rate = input_sample_rate
        self.output_sample_rate = output_sample_rate
        self.output_hop_length = output_hop_length
        self.ar_mel_length_compression = ar_mel_length_compression
        self.speaker_encoder_audio_config = speaker_encoder_audio_config
        self.waveform_decoder = HifiganGenerator(
            decoder_input_dim,
            1,
            resblock_type_decoder,
            resblock_dilation_sizes_decoder,
            resblock_kernel_sizes_decoder,
            upsample_kernel_sizes_decoder,
            upsample_initial_channel_decoder,
            upsample_rates_decoder,
            inference_padding=0,
            cond_channels=d_vector_dim,
            conv_pre_weight_norm=False,
            conv_post_weight_norm=False,
            conv_post_bias=False,
            cond_in_each_up_layer=cond_d_vector_in_each_upsampling_layer,
        )
        self.speaker_encoder = ResNetSpeakerEncoder(
            input_dim=64,
            proj_dim=512,
            log_input=True,
            use_torch_spec=True,
            audio_config=speaker_encoder_audio_config,
        )

    @property
    def device(self):
        return next(self.parameters()).device

    def forward(self, latents, g=None):
        """
        Args:
            x (Tensor): feature input tensor (GPT latent).
            g (Tensor): global conditioning input tensor.

        Returns:
            Tensor: output waveform.

        Shapes:
            x: [B, C, T]
            Tensor: [B, 1, T]
        """

        z = torch.nn.functional.interpolate(
            latents.transpose(1, 2),
            scale_factor=[self.ar_mel_length_compression / self.output_hop_length],
            mode="linear",
        ).squeeze(1)
        # upsample to the right sr
        if self.output_sample_rate != self.input_sample_rate:
            z = torch.nn.functional.interpolate(
                z,
                scale_factor=[self.output_sample_rate / self.input_sample_rate],
                mode="linear",
            ).squeeze(0)
        o = self.waveform_decoder(z, g=g)
        return o

    @torch.inference_mode()
    def inference(self, c, g):
        """
        Args:
            x (Tensor): feature input tensor (GPT latent).
            g (Tensor): global conditioning input tensor.

        Returns:
            Tensor: output waveform.

        Shapes:
            x: [B, C, T]
            Tensor: [B, 1, T]
        """
        return self.forward(c, g=g)

    def load_checkpoint(self, checkpoint_path, eval=False):  # pylint: disable=unused-argument, redefined-builtin
        state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"))
        # remove unused keys
        state = state["model"]
        states_keys = list(state.keys())
        for key in states_keys:
            if "waveform_decoder." not in key and "speaker_encoder." not in key:
                del state[key]

        self.load_state_dict(state)
        if eval:
            self.eval()
            assert not self.training
            self.waveform_decoder.remove_weight_norm()