Spaces:
Build error
Build error
File size: 7,592 Bytes
18f2f54 0c1e42b 18f2f54 0c1e42b 18f2f54 0c1e42b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import PIL
from PIL import Image
import numpy as np
from matplotlib import pylab as P
import cv2
import torch
from torch.utils.data import TensorDataset
from torchvision import transforms
# dirpath_to_modules = './Visual-Explanation-Methods-PyTorch'
# sys.path.append(dirpath_to_modules)
from torchvex.base import ExplanationMethod
from torchvex.utils.normalization import clamp_quantile
def ShowImage(im, title='', ax=None):
image = np.array(im)
return image
def ShowGrayscaleImage(im, title='', ax=None):
if ax is None:
P.figure()
P.axis('off')
P.imshow(im, cmap=P.cm.gray, vmin=0, vmax=1)
P.title(title)
return P
def ShowHeatMap(im, title='', ax=None):
im = im - im.min()
im = im / im.max()
im = im.clip(0,1)
im = np.uint8(im * 255)
im = cv2.resize(im, (224,224))
image = cv2.resize(im, (224, 224))
# Apply JET colormap
color_heatmap = cv2.applyColorMap(image, cv2.COLORMAP_HOT)
# P.imshow(im, cmap='inferno')
# P.title(title)
return color_heatmap
def ShowMaskedImage(saliency_map, image, title='', ax=None):
"""
Save saliency map on image.
Args:
image: Tensor of size (H,W,3)
saliency_map: Tensor of size (H,W,1)
"""
# if ax is None:
# P.figure()
# P.axis('off')
saliency_map = saliency_map - saliency_map.min()
saliency_map = saliency_map / saliency_map.max()
saliency_map = saliency_map.clip(0,1)
saliency_map = np.uint8(saliency_map * 255)
saliency_map = cv2.resize(saliency_map, (224,224))
image = cv2.resize(image, (224, 224))
# Apply JET colormap
color_heatmap = cv2.applyColorMap(saliency_map, cv2.COLORMAP_HOT)
# Blend image with heatmap
img_with_heatmap = cv2.addWeighted(image, 0.4, color_heatmap, 0.6, 0)
# P.imshow(img_with_heatmap)
# P.title(title)
return img_with_heatmap
def LoadImage(file_path):
im = PIL.Image.open(file_path)
im = im.resize((224, 224))
im = np.asarray(im)
return im
def visualize_image_grayscale(image_3d, percentile=99):
r"""Returns a 3D tensor as a grayscale 2D tensor.
This method sums a 3D tensor across the absolute value of axis=2, and then
clips values at a given percentile.
"""
image_2d = np.sum(np.abs(image_3d), axis=2)
vmax = np.percentile(image_2d, percentile)
vmin = np.min(image_2d)
return np.clip((image_2d - vmin) / (vmax - vmin), 0, 1)
def visualize_image_diverging(image_3d, percentile=99):
r"""Returns a 3D tensor as a 2D tensor with positive and negative values.
"""
image_2d = np.sum(image_3d, axis=2)
span = abs(np.percentile(image_2d, percentile))
vmin = -span
vmax = span
return np.clip((image_2d - vmin) / (vmax - vmin), -1, 1)
class SimpleGradient(ExplanationMethod):
def __init__(self, model, create_graph=False,
preprocess=None, postprocess=None):
super().__init__(model, preprocess, postprocess)
self.create_graph = create_graph
def predict(self, x):
return self.model(x)
@torch.enable_grad()
def process(self, inputs, target):
self.model.zero_grad()
inputs.requires_grad_(True)
out = self.model(inputs)
out = out if type(out) == torch.Tensor else out.logits
num_classes = out.size(-1)
onehot = torch.zeros(inputs.size(0), num_classes, *target.shape[1:])
onehot = onehot.to(dtype=inputs.dtype, device=inputs.device)
onehot.scatter_(1, target.unsqueeze(1), 1)
grad, = torch.autograd.grad(
(out*onehot).sum(), inputs, create_graph=self.create_graph
)
return grad
class SmoothGradient(ExplanationMethod):
def __init__(self, model, stdev_spread=0.15, num_samples=25,
magnitude=True, batch_size=-1,
create_graph=False, preprocess=None, postprocess=None):
super().__init__(model, preprocess, postprocess)
self.stdev_spread = stdev_spread
self.nsample = num_samples
self.create_graph = create_graph
self.magnitude = magnitude
self.batch_size = batch_size
if self.batch_size == -1:
self.batch_size = self.nsample
self._simgrad = SimpleGradient(model, create_graph)
def process(self, inputs, target):
self.model.zero_grad()
maxima = inputs.flatten(1).max(-1)[0]
minima = inputs.flatten(1).min(-1)[0]
stdev = self.stdev_spread * (maxima - minima).cpu()
stdev = stdev.view(inputs.size(0), 1, 1, 1).expand_as(inputs)
stdev = stdev.unsqueeze(0).expand(self.nsample, *[-1]*4)
noise = torch.normal(0, stdev)
target_expanded = target.unsqueeze(0).cpu()
target_expanded = target_expanded.expand(noise.size(0), -1)
noiseloader = torch.utils.data.DataLoader(
TensorDataset(noise, target_expanded), batch_size=self.batch_size
)
total_gradients = torch.zeros_like(inputs)
for noise, t_exp in noiseloader:
inputs_w_noise = inputs.unsqueeze(0) + noise.to(inputs.device)
inputs_w_noise = inputs_w_noise.view(-1, *inputs.shape[1:])
gradients = self._simgrad(inputs_w_noise, t_exp.view(-1))
gradients = gradients.view(self.batch_size, *inputs.shape)
if self.magnitude:
gradients = gradients.pow(2)
total_gradients = total_gradients + gradients.sum(0)
smoothed_gradient = total_gradients / self.nsample
return smoothed_gradient
def feed_forward(model_name, image, model=None, feature_extractor=None):
if model_name in ['ConvNeXt', 'ResNet']:
inputs = feature_extractor(image, return_tensors="pt")
logits = model(**inputs).logits
prediction_class = logits.argmax(-1).item()
else:
transform_images = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
input_tensor = transform_images(image)
inputs = input_tensor.unsqueeze(0)
output = model(inputs)
prediction_class = output.argmax(-1).item()
#prediction_label = model.config.id2label[prediction_class]
return inputs, prediction_class
def clip_gradient(gradient):
gradient = gradient.abs().sum(1, keepdim=True)
return clamp_quantile(gradient, q=0.99)
def fig2img(fig):
"""Convert a Matplotlib figure to a PIL Image and return it"""
import io
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
img = Image.open(buf)
return img
def generate_smoothgrad_mask(image, model_name, model=None, feature_extractor=None, num_samples=25, return_mask=False):
inputs, prediction_class = feed_forward(model_name, image, model, feature_extractor)
smoothgrad_gen = SmoothGradient(
model, num_samples=num_samples, stdev_spread=0.1,
magnitude=False, postprocess=clip_gradient)
if type(inputs) != torch.Tensor:
inputs = inputs['pixel_values']
smoothgrad_mask = smoothgrad_gen(inputs, prediction_class)
smoothgrad_mask = smoothgrad_mask[0].numpy()
smoothgrad_mask = np.transpose(smoothgrad_mask, (1, 2, 0))
image = np.asarray(image)
# ori_image = ShowImage(image)
heat_map_image = ShowHeatMap(smoothgrad_mask)
masked_image = ShowMaskedImage(smoothgrad_mask, image)
if return_mask:
return heat_map_image, masked_image, smoothgrad_mask
else:
return heat_map_image, masked_image
|