File size: 6,298 Bytes
076829a
 
 
 
 
 
 
 
 
 
 
 
 
 
9504c3f
076829a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90433f5
 
 
 
 
 
 
076829a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fd15bb
076829a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9504c3f
 
 
 
 
076829a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e70e2
076829a
e141634
076829a
 
 
 
 
f4e70e2
 
076829a
 
f4e70e2
 
076829a
 
f4e70e2
 
076829a
 
 
 
 
 
 
f4e70e2
 
076829a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import random
from typing import Dict, Optional
import torch
import torch.nn as nn
from torch.nn import functional as F
from omegaconf import DictConfig
from cosyvoice.utils.mask import make_pad_mask


class MaskedDiffWithXvec(torch.nn.Module):
    def __init__(self,
                 input_size: int = 512,
                 output_size: int = 80,
                 spk_embed_dim: int = 192,
                 output_type: str = "mel",
                 vocab_size: int = 4096,
                 input_frame_rate: int = 50,
                 only_mask_loss: bool = True,
                 encoder: torch.nn.Module = None,
                 length_regulator: torch.nn.Module = None,
                 decoder: torch.nn.Module = None,
                 decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
                                       'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
                                                                 'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
                                       'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
                                                          'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
                 mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
                                        'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
        super().__init__()
        self.input_size = input_size
        self.output_size = output_size
        self.decoder_conf = decoder_conf
        self.mel_feat_conf = mel_feat_conf
        self.vocab_size = vocab_size
        self.output_type = output_type
        self.input_frame_rate = input_frame_rate
        logging.info(f"input frame rate={self.input_frame_rate}")
        self.input_embedding = nn.Embedding(vocab_size, input_size)
        self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
        self.encoder = encoder
        self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
        self.decoder = decoder
        self.length_regulator = length_regulator
        self.only_mask_loss = only_mask_loss

    def forward(
            self,
            batch: dict,
            device: torch.device,
    ) -> Dict[str, Optional[torch.Tensor]]:
        token = batch['speech_token'].to(device)
        token_len = batch['speech_token_len'].to(device)
        feat = batch['speech_feat'].to(device)
        feat_len = batch['speech_feat_len'].to(device)
        embedding = batch['embedding'].to(device)

        # xvec projection
        embedding = F.normalize(embedding, dim=1)
        embedding = self.spk_embed_affine_layer(embedding)

        # concat text and prompt_text
        mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
        token = self.input_embedding(torch.clamp(token, min=0)) * mask

        # text encode
        h, h_lengths = self.encoder(token, token_len)
        h = self.encoder_proj(h)
        h, h_lengths = self.length_regulator(h, feat_len)

        # get conditions
        conds = torch.zeros(feat.shape, device=token.device)
        for i, j in enumerate(feat_len):
            if random.random() < 0.5:
                continue
            index = random.randint(0, int(0.3 * j))
            conds[i, :index] = feat[i, :index]
        conds = conds.transpose(1, 2)

        mask = (~make_pad_mask(feat_len)).to(h)
        feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
        loss, _ = self.decoder.compute_loss(
            feat.transpose(1, 2).contiguous(),
            mask.unsqueeze(1),
            h.transpose(1, 2).contiguous(),
            embedding,
            cond=conds
        )
        return {'loss': loss}

    @torch.inference_mode()
    def inference(self,
                  token,
                  token_len,
                  prompt_token,
                  prompt_token_len,
                  prompt_feat,
                  prompt_feat_len,
                  embedding):
        assert token.shape[0] == 1
        # xvec projection
        embedding = F.normalize(embedding, dim=1)
        embedding = self.spk_embed_affine_layer(embedding)

        # concat text and prompt_text
        token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
        token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
        mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
        token = self.input_embedding(torch.clamp(token, min=0)) * mask

        # text encode
        h, h_lengths = self.encoder(token, token_len)
        h = self.encoder_proj(h)
        mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / 50 * 22050 / 256)
        h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2)

        # get conditions
        conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device)
        conds[:, :mel_len1] = prompt_feat
        conds = conds.transpose(1, 2)

        # mask = (~make_pad_mask(feat_len)).to(h)
        mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
        feat = self.decoder(
            mu=h.transpose(1, 2).contiguous(),
            mask=mask.unsqueeze(1),
            spks=embedding,
            cond=conds,
            n_timesteps=10
        )
        feat = feat[:, :, mel_len1:]
        assert feat.shape[2] == mel_len2
        return feat