File size: 7,550 Bytes
51ece47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "import gradio as gr\n",
    "import tensorflow as tf\n",
    "import numpy as np\n",
    "from PIL import Image"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "model_path = \"transferlearning_pokemon.keras\"\n",
    "model = tf.keras.models.load_model(model_path)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define the core prediction function\n",
    "def predict_pokemon(image):\n",
    "    # Preprocess image\n",
    "    print(type(image))\n",
    "    image = Image.fromarray(image.astype('uint8'))  # Convert numpy array to PIL image\n",
    "    image = image.resize((150, 150))  # Resize the image to 150x150\n",
    "    image = np.array(image)\n",
    "    image = np.expand_dims(image, axis=0)  # Expand dimensions to match the model input shape\n",
    "    \n",
    "    # Predict\n",
    "    prediction = model.predict(image)\n",
    "    \n",
    "    # Print the shape of the prediction to debug\n",
    "    print(f\"Prediction shape: {prediction.shape}\")\n",
    "    \n",
    "    # Assuming the output is already softmax probabilities\n",
    "    probabilities = prediction[0]\n",
    "    \n",
    "    # Print the probabilities array to debug\n",
    "    print(f\"Probabilities: {probabilities}\")\n",
    "    \n",
    "    # Assuming your model was trained with these class names\n",
    "    class_names = ['charmander', 'eevee', 'pikachuu']  # Replace 'another_pokemon' with your third class name\n",
    "    \n",
    "    # Create a dictionary of class probabilities\n",
    "    result = {class_names[i]: float(probabilities[i]) for i in range(len(class_names))}\n",
    "    \n",
    "    return result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7866\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7866/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'numpy.ndarray'>\n",
      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 140ms/step\n",
      "Prediction shape: (1, 3)\n",
      "Probabilities: [9.1263162e-31 1.1169604e-30 1.0000000e+00]\n",
      "<class 'numpy.ndarray'>\n",
      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step\n",
      "Prediction shape: (1, 3)\n",
      "Probabilities: [4.4493477e-06 8.4401548e-01 1.5598010e-01]\n",
      "<class 'numpy.ndarray'>\n",
      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step\n",
      "Prediction shape: (1, 3)\n",
      "Probabilities: [9.9999964e-01 1.0916104e-07 1.8336594e-07]\n",
      "<class 'numpy.ndarray'>\n",
      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step\n",
      "Prediction shape: (1, 3)\n",
      "Probabilities: [5.0329237e-04 8.8987160e-01 1.0962512e-01]\n",
      "<class 'numpy.ndarray'>\n",
      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 82ms/step\n",
      "Prediction shape: (1, 3)\n",
      "Probabilities: [9.1263162e-31 1.1169604e-30 1.0000000e+00]\n",
      "<class 'numpy.ndarray'>\n",
      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step\n",
      "Prediction shape: (1, 3)\n",
      "Probabilities: [4.4493477e-06 8.4401548e-01 1.5598010e-01]\n",
      "<class 'numpy.ndarray'>\n",
      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 68ms/step\n",
      "Prediction shape: (1, 3)\n",
      "Probabilities: [5.0329237e-04 8.8987160e-01 1.0962512e-01]\n",
      "<class 'numpy.ndarray'>\n",
      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step\n",
      "Prediction shape: (1, 3)\n",
      "Probabilities: [5.0329237e-04 8.8987160e-01 1.0962512e-01]\n",
      "<class 'numpy.ndarray'>\n",
      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step\n",
      "Prediction shape: (1, 3)\n",
      "Probabilities: [9.9999964e-01 1.0916104e-07 1.8336594e-07]\n",
      "<class 'numpy.ndarray'>\n",
      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 71ms/step\n",
      "Prediction shape: (1, 3)\n",
      "Probabilities: [4.0465540e-22 8.3268744e-22 1.0000000e+00]\n",
      "<class 'numpy.ndarray'>\n",
      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 75ms/step\n",
      "Prediction shape: (1, 3)\n",
      "Probabilities: [9.9999964e-01 1.0916104e-07 1.8336594e-07]\n",
      "<class 'numpy.ndarray'>\n",
      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 66ms/step\n",
      "Prediction shape: (1, 3)\n",
      "Probabilities: [5.0329237e-04 8.8987160e-01 1.0962512e-01]\n"
     ]
    }
   ],
   "source": [
    "# Create the Gradio interface\n",
    "input_image = gr.Image()\n",
    "iface = gr.Interface(\n",
    "    fn=predict_pokemon,\n",
    "    inputs=input_image, \n",
    "    outputs=gr.Label(),\n",
    "    examples=[\"pokemon_examples/charmander.png\", \"pokemon_examples/charmander1.jpg\", \"pokemon_examples/eevee.png\", \"pokemon_examples/eevee1.jpg\", \"pokemon_examples/pika.png\", \"pokemon_examples/pika1.jpg\"],   \n",
    "    description=\"A simple mlp classification model for image classification using the mnist dataset.\")\n",
    "iface.launch()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "venv_new",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}