Spaces:
Runtime error
Runtime error
File size: 2,151 Bytes
f860c91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers import UniPCMultistepScheduler
import gradio as gr
import torch
# Constants
low_threshold = 100
high_threshold = 200
# Models
controlnet_pose = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16
)
controlnet_canny = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=[controlnet_pose,controlnet_canny],
safety_checker=None, torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# This command loads the individual model components on GPU on-demand. So, we don't
# need to explicitly call pipe.to("cuda").
pipe.enable_model_cpu_offload()
# xformers
pipe.enable_xformers_memory_efficient_attention()
# Generator seed,
generator = torch.manual_seed(0)
def generate_images(pose_image, canny_image, prompt):
output = pipe(
prompt,
[pose_image, canny_image],
generator=generator,
num_images_per_prompt=3,
num_inference_steps=20,
)
all_outputs = []
all_outputs.append(pose_image, canny_image)
for image in output.images:
all_outputs.append(image)
return all_outputs
gr.Interface(
generate_images,
inputs=[
gr.Image(type="pil"),
gr.Image(type="pil"),
gr.Textbox(
label="Enter your prompt",
max_lines=1,
placeholder="best quality, extremely detailed",
),
],
outputs=gr.Gallery().style(grid=[2], height="auto"),
title="Generate controlled outputs with Mult-ControlNet and Stable Diffusion using π€Diffusers",
description="This Space uses pose lines and canny edged image as the additional conditioning. Please refer to the \"Examples\" for what kind of images are appropriate.",
examples=[["sample_pose_body.png", "sample_canny_hand.png", "best quality, extremely detailed"]],
allow_flagging=False,
).launch(enable_queue=True) |