Spaces:
Sleeping
Sleeping
File size: 11,698 Bytes
4c1fd66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import pandas as pd
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import torch
import torch.nn.functional as F
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from sentence_transformers import SentenceTransformer
from transformers import BertTokenizer,BertForMaskedLM
import cv2
def load_sentence_model():
sentence_model = SentenceTransformer('paraphrase-distilroberta-base-v1')
return sentence_model
@st.cache(show_spinner=False)
def load_model(model_name):
if model_name.startswith('bert'):
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertForMaskedLM.from_pretrained(model_name)
model.eval()
return tokenizer,model
@st.cache
def load_data(sentence_num):
df = pd.read_csv('tsne_out.csv')
df = df.loc[lambda d: (d['sentence_num']==sentence_num)&(d['iter_num']<1000)]
return df
@st.cache
def mask_prob(model,mask_id,sentences,position,temp=1):
masked_sentences = sentences.clone()
masked_sentences[:, position] = mask_id
with torch.no_grad():
logits = model(masked_sentences)[0]
return F.log_softmax(logits[:, position] / temp, dim = -1)
@st.cache
def sample_words(probs,pos,sentences):
candidates = [[tokenizer.decode([candidate]),torch.exp(probs)[0,candidate].item()]
for candidate in torch.argsort(probs[0],descending=True)[:10]]
df = pd.DataFrame(data=candidates,columns=['word','prob'])
chosen_words = torch.multinomial(torch.exp(probs), num_samples=1).squeeze(dim=-1)
new_sentences = sentences.clone()
new_sentences[:, pos] = chosen_words
return new_sentences, df
def run_chains(tokenizer,model,mask_id,input_text,num_steps):
init_sent = tokenizer(input_text,return_tensors='pt')['input_ids']
seq_len = init_sent.shape[1]
sentence = init_sent.clone()
data_list = []
st.sidebar.write('Generating samples...')
st.sidebar.write('This takes ~30 seconds for 1000 steps with ~10 token sentences')
chain_progress = st.sidebar.progress(0)
for step_id in range(num_steps):
chain_progress.progress((step_id+1)/num_steps)
pos = torch.randint(seq_len-2,size=(1,)).item()+1
data_list.append([step_id,' '.join([tokenizer.decode([token]) for token in sentence[0]]),pos])
probs = mask_prob(model,mask_id,sentence,pos)
sentence,_ = sample_words(probs,pos,sentence)
return pd.DataFrame(data=data_list,columns=['step','sentence','next_sample_loc'])
@st.cache(suppress_st_warning=True,show_spinner=False)
def run_tsne(chain):
st.sidebar.write('Running t-SNE...')
chain = chain.assign(cleaned_sentence=chain.sentence.str.replace(r'\[CLS\] ', '',regex=True).str.replace(r' \[SEP\]', '',regex=True))
sentence_model = load_sentence_model()
sentence_embeddings = sentence_model.encode(chain.cleaned_sentence.to_list(), show_progress_bar=False)
tsne = TSNE(n_components = 2, n_iter=2000)
big_pca = PCA(n_components = 50)
tsne_vals = tsne.fit_transform(big_pca.fit_transform(sentence_embeddings))
tsne = pd.concat([chain, pd.DataFrame(tsne_vals, columns = ['x_tsne', 'y_tsne'],index=chain.index)], axis = 1)
return tsne
def clear_df():
del st.session_state['df']
@st.cache(show_spinner=False)
def plot_fig(df,sent_id,xlims,ylims,color_list):
x_tsne, y_tsne = df.x_tsne, df.y_tsne
fig = plt.figure(figsize=(5,5),dpi=200)
ax = fig.add_subplot(1,1,1)
ax.plot(x_tsne[:sent_id+1],y_tsne[:sent_id+1],linewidth=0.2,color='gray',zorder=1)
ax.scatter(x_tsne[:sent_id+1],y_tsne[:sent_id+1],s=5,color=color_list[:sent_id+1],zorder=2)
ax.scatter(x_tsne[sent_id:sent_id+1],y_tsne[sent_id:sent_id+1],s=50,marker='*',color='blue',zorder=3)
ax.set_xlim(*xlims)
ax.set_ylim(*ylims)
ax.axis('off')
ax.set_title(df.cleaned_sentence.to_list()[sent_id])
fig.savefig(f'figures/{sent_id}.png')
plt.clf()
plt.close()
def pre_render_images(df,input_sent_id):
sent_id_options = [min(len(df)-1,max(0,input_sent_id+increment)) for increment in [-500,-100,-10,-1,0,1,10,100,500]]
x_tsne, y_tsne = df.x_tsne, df.y_tsne
xmax,xmin = (max(x_tsne)//30+1)*30,(min(x_tsne)//30-1)*30
ymax,ymin = (max(y_tsne)//30+1)*30,(min(y_tsne)//30-1)*30
color_list = sns.color_palette('flare',n_colors=int(len(df)*1.2))
sent_list = []
fig_production = st.progress(0)
for fig_id,sent_id in enumerate(sent_id_options):
fig_production.progress(fig_id+1)
plot_fig(fig_id,x_tsne,y_tsne,sent_id,[xmin,xmax],[ymin,ymax],color_list)
sent_list.append(df.cleaned_sentence.to_list()[sent_id])
return sent_list
if __name__=='__main__':
# Config
max_width = 1500
padding_top = 2
padding_right = 5
padding_bottom = 0
padding_left = 5
define_margins = f"""
<style>
.appview-container .main .block-container{{
max-width: {max_width}px;
padding-top: {padding_top}rem;
padding-right: {padding_right}rem;
padding-left: {padding_left}rem;
padding-bottom: {padding_bottom}rem;
}}
</style>
"""
hide_table_row_index = """
<style>
tbody th {display:none}
.blank {display:none}
</style>
"""
st.markdown(define_margins, unsafe_allow_html=True)
st.markdown(hide_table_row_index, unsafe_allow_html=True)
# Title
st.header("Demo: Probing BERT's priors with serial reproduction chains")
# Load BERT
tokenizer,model = load_model('bert-base-uncased')
mask_id = tokenizer.encode("[MASK]")[1:-1][0]
# First step: load the dataframe containing sentences
input_type = st.sidebar.radio(label='1. Choose the input type',options=('Use one of our example sentences','Use your own initial sentence'))
if input_type=='Use one of our example sentences':
sentence = st.sidebar.selectbox("Select the inital sentence",
('About 170 campers attend the camps each week.',
'She grew up with three brothers and ten sisters.'))
if sentence=='About 170 campers attend the camps each week.':
sentence_num = 6
else:
sentence_num = 8
st.session_state.df = load_data(sentence_num)
else:
sentence = st.sidebar.text_input('Type down your own sentence here',on_change=clear_df)
num_steps = st.sidebar.number_input(label='How many steps do you want to run?',value=1000)
if st.sidebar.button('Run chains'):
chain = run_chains(tokenizer,model,mask_id,sentence,num_steps=num_steps)
st.session_state.df = run_tsne(chain)
st.session_state.finished_sampling = True
if 'df' in st.session_state:
df = st.session_state.df
sent_id = st.sidebar.slider(label='2. Select the position in a chain to start exploring',
min_value=0,max_value=len(df)-1,value=0)
explore_type = st.sidebar.radio('3. Choose the way to explore',options=['In fixed increments','Click through each step','Autoplay'])
if explore_type=='Autoplay':
if st.button('Create the video (this may take a few minutes)'):
st.write('Creating the video...')
x_tsne, y_tsne = df.x_tsne, df.y_tsne
xmax,xmin = (max(x_tsne)//30+1)*30,(min(x_tsne)//30-1)*30
ymax,ymin = (max(y_tsne)//30+1)*30,(min(y_tsne)//30-1)*30
color_list = sns.color_palette('flare',n_colors=1200)
fig_production = st.progress(0)
plot_fig(df,0,[xmin,xmax],[ymin,ymax],color_list)
img = cv2.imread('figures/0.png')
height, width, layers = img.shape
size = (width,height)
out = cv2.VideoWriter('sampling_video.mp4',cv2.VideoWriter_fourcc(*'H264'), 3, size)
for sent_id in range(1000):
fig_production.progress((sent_id+1)/1000)
plot_fig(df,sent_id,[xmin,xmax],[ymin,ymax],color_list)
img = cv2.imread(f'figures/{sent_id}.png')
out.write(img)
out.release()
cols = st.columns([1,2,1])
with cols[1]:
with open('sampling_video.mp4', 'rb') as f:
st.video(f)
else:
if explore_type=='In fixed increments':
button_labels = ['-500','-100','-10','-1','0','+1','+10','+100','+500']
increment = st.sidebar.radio(label='select increment',options=button_labels,index=4)
sent_id += int(increment.replace('+',''))
sent_id = min(len(df)-1,max(0,sent_id))
elif explore_type=='Click through each step':
sent_id = st.sidebar.number_input(label='step number',value=sent_id)
x_tsne, y_tsne = df.x_tsne, df.y_tsne
xlims = [(min(x_tsne)//30-1)*30,(max(x_tsne)//30+1)*30]
ylims = [(min(y_tsne)//30-1)*30,(max(y_tsne)//30+1)*30]
color_list = sns.color_palette('flare',n_colors=int(len(df)*1.2))
fig = plt.figure(figsize=(5,5),dpi=200)
ax = fig.add_subplot(1,1,1)
ax.plot(x_tsne[:sent_id+1],y_tsne[:sent_id+1],linewidth=0.2,color='gray',zorder=1)
ax.scatter(x_tsne[:sent_id+1],y_tsne[:sent_id+1],s=5,color=color_list[:sent_id+1],zorder=2)
ax.scatter(x_tsne[sent_id:sent_id+1],y_tsne[sent_id:sent_id+1],s=50,marker='*',color='blue',zorder=3)
ax.set_xlim(*xlims)
ax.set_ylim(*ylims)
ax.axis('off')
sentence = df.cleaned_sentence.to_list()[sent_id]
input_sent = tokenizer(sentence,return_tensors='pt')['input_ids']
decoded_sent = [tokenizer.decode([token]) for token in input_sent[0]]
show_candidates = st.checkbox('Show candidates')
if show_candidates:
st.write('Click any word to see each candidate with its probability')
cols = st.columns(len(decoded_sent))
with cols[0]:
st.write(decoded_sent[0])
with cols[-1]:
st.write(decoded_sent[-1])
for word_id,(col,word) in enumerate(zip(cols[1:-1],decoded_sent[1:-1])):
with col:
if st.button(word):
probs = mask_prob(model,mask_id,input_sent,word_id+1)
_,candidates_df = sample_words(probs, word_id+1, input_sent)
st.table(candidates_df)
else:
disp_style = '"font-family:san serif; color:Black; font-size: 25px; font-weight:bold"'
if explore_type=='Click through each step' and input_type=='Use your own initial sentence' and sent_id>0 and 'finished_sampling' in st.session_state:
sampled_loc = df.next_sample_loc.to_list()[sent_id-1]
disp_sent_before = f'<p style={disp_style}>'+' '.join(decoded_sent[1:sampled_loc])
new_word = f'<span style="color:Red">{decoded_sent[sampled_loc]}</span>'
disp_sent_after = ' '.join(decoded_sent[sampled_loc+1:-1])+'</p>'
st.markdown(disp_sent_before+' '+new_word+' '+disp_sent_after,unsafe_allow_html=True)
else:
st.markdown(f'<p style={disp_style}>{sentence}</p>',unsafe_allow_html=True)
cols = st.columns([1,2,1])
with cols[1]:
st.pyplot(fig)
|